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Final Report: Grant No. DAAL 03-89-G-0039

XIII. International Workshop on Condensed Matter Theories

The grant enabled 10 scientists from the U.S.A. to participate at the XII.

International Workshop on Condensed Matter Theories held at Campos do Jordao, Brazil in

August 1989. Without this grant the U.S. Participation at the Worshop would have been

very minimal. The grant allowed U.S. scientists to interact effectively with their

international counterparts.

The list of the scientists from the U.S.A. who have been supported by the grant is

attached in Appendix 1 and the titles of their talks presented at the Workshop are listed in

Appendix 2. Participants from the U.S.A. receiving the grant have acknowledged that in

their respective articles.

Copies of the articles containing the subject matter presented by the participants

supported by the grant are attached in Appendix 3. All presentations were invited talks.

These articles have been accepted for publication in Condensed Matter Theories Vol. 5. The

publisher, Plenum Publishing Corporation, expects to bring out the volume shortly.

In keeping with the objective of the grant, emphasis was placed on theories related to

high temperture superconductivity, molecular dynamics and physics of strongly correlated

systems. In addition, talks on the use of maximum entrophy principle to describe cooperative

phenomena were presented. A large number of scientists from the host country, Brazil,

participated actively. Two topmost scientists from the U.S.S.R., Professor Bashkin and

Pitaevski of their National Academy of Science's Institute for Physical Problems, took part.

The Workshop also helped to foster another key objective of bringing together

scientists working in different areas of physics in order to fas.ilitate interchange of ideas.



The Workshop was very effective in cross fertilization of ideas and development of new

interests. For example, Dr. Proto, originally a nuclear physicist, presented the talk on the

role of maximum entrophy principle. Dr. Campbell, originally a solid state theorist,

presented the talk on correlations in atoms. The principle investigator, originally an atomic

and nuclear physicist, presented a talk on superconductivity. Another objective of the

workshop, namely to serve as a forum to initiate collabortive research in the area of

condensed matter theories, has also been fulfilled.

Thus, the purpose and objective of the grant have been successfully achieved.
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)- J

John W. Clark.

4. Generalized Momentum Distributions of Quantum Fluids,; by John W. Clark and

Manfred L. Ristig.

5. - Abnormal Occupation, Tighter Bound Cooper Pairs and High T, Superconductivity,.,

by M. de Llano and James P. Vary.

6. The Foundation of Nuclear Shell Model, by W. H. Dickhoff, P.P. Domitrovich, A.

Polls and A. Ramos.

7. " Quantum Molecular Dynamics Simulation of Electron Bubbles in a Dense Helium

Gas' by Rajiv K. Kalia, Priya Vashista, S. W. de Leeuw, and John Harris.

8. "Quantum Liquid Films: A Generic Many-Body Problem, by E. Krotscheck, J. L.

Epstein and M. Saarela.

9. On the Role of Electron-Medium Couplir g in High Temperature Superconductors by

.Bary "Malik.

O! ' Baym-Kadanoff Theory Made Even Planar, by Roger A. Smith.
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THOMAS-FERMI EQUATION OF STATE-THE HOT CURVE

George A. Baker, Jr. and J. D. Johnson

Theoretical Division, Los Alamos National Laboratory
University of California, Los Alamos, N. M. 87545, USA

ABSTRACT

We derive the high-temperature limit of the equation of state based on the
Thomas-Fermi statistical theory of the atom. The resulting "hot curve" is in fact
the ideal Fermi gas. We expand the thermodynamic properties of this gas in powers
of the fugacity and use this expansion to construct a representation of the pressure,
accurate to about 0.1 %. This representation is compared with the actual theory for
aluminum and the "hot curve" is found to represent it well over a large region of
interest in applications.



1. 1NTRODUCT'ION AND SUMMARY

The Thomas-Fermi (T-F) statistical theory of the atom] as well.as the modifica-
tions due to Dirac' have long bcen uscd as a l)a ic starting point for the computation
of approximations to the equations of 'state.'1 4 In order to make use of this proce-
dure, computcr programs have been writtcn to compute the num, rical content of the
thcory. They consume a sufficient. amount of computer time, even today, so that it
is impractical to use them to compute, ab initio, the value of the pressure, internal
energy, etc., every time that a new value is required inside an application computer
program. Besides, as these efforts represent only approximate equations of state, some
adjustment is necessary to bring them into accord with physical reality. Consequen-
tially, to date largely empirical fits have been used to represent the equations of state
for t he purposes of applications.

In this work, we are concerncd with beginning an analysis of the physical struc-
ture of the equations of state of real matter. As a start, we will study the Thomas-
Fermi model equation of state which represents a fair amount of the physics, at least
in some regions. One method which is normally fruitful, is to consider various limits.
There are currently two which are known. The first is the low-density limit. Here
there is complete ionization when the system is in equilibrium and the pressure for
an element of nuclear charg- Z is

Pu/2N = (Z + 1)kT, (1.1)

the ideal gas equation of state. Here P is the pressure, P1 is the volume of the
system, N is the number of atoms, k is Boltzmann's constant and T is the absolute
temperature. The second limit 3 is the low-temperature limit, or the "cold curve."
Here the pressure is of the form,

P2/n = Z3(Z /N)) (1.2)

where O(x) is a well defined function. If we think of the temperature-density, quarter-
plane, these results give the limiting behavior of the T-F model along the zero-
temperature and the zero-density edges. There remain the high-density and the
high-temperature regions to examine for physical structure.

One might think that in the high-temperature limit it would be appropriate to
describe the system in purely classical terms. Indeed if such were the case, Baker5

has proven that the pressure would be of the form,

P N =- -T f(T 3 IN, Z). (1.3)

The Debye-Hiickel correction 6 is of just this form. Also Baker has shown for this case
that the internal energy has the particularly simple form,

u = 3PQ - 3(Z + 1)NkT. (1.4)

The statistical mechanics of Coulombic systems have been much studied.7 It is now
well known that there does not exist a classical (i.e. Planck's constant h = 0) gas
because atoms with a Coulomb interaction collapse to E = -00. Thus if we are to
ever introduce a Coulomb attraction between the atomic nucleus and the electrons,
we must necessarily include some account of the quantum effects that are needed
to stabilize the system. As is also well known there are two important physical
lengths to be considered. The first is the de Broglie length which is proportional
to h/V/nT, where m is the electron mass, and which measures in a noninteracting
gas the importance of quantum effects. The Coulomb interaction does not by itself
provide the second length and the difficulty of its long range can not be circumvented
by studying dilute systems because it contains no parameter with the dimensions of



a length. The bccond length i:, the Debyc screeing hIngth which is proportional .o

c2/kT. This length is however a statistical cffect and should follow from the theory,
but unfortunately is not thcre ab initio. Thus when wc look to the high-tempcraturc
and high-density regions, if we consider the cases wlwre i2/N >> (c 2 /kT)3 , then we
can hope to start with a noninteracting election gas (with a background gas of atomic
nuclei) as the basic system.

In the second section, we derive the limit of Thomas-Ferm theory when the
Debye screening length is negligible compared to the interparticle distance, and the
de Broglie length remains arbitrary. We find that it correctly reduces to the ideal
Fermi gas. We call this limit the "hot curve," because it is readied if one either fixes
the density and lets the temperature go to infinity, or mud less restrictively, it is also
reached if one fixes the de Broglie length and then lets the temperature go to infinity.
In the third section we review the theory of the ideal Fermi gas and descriho how
to calculate its properties in a practical manner. We derive lengthy fugacity series
and find that the pressure function can be approximated to within, say 0.1%, by a
low-order, two-point Pade approximant. In the final section we compare the ideal gas
approximation to results for aluminum and map out its region of validity to various
degrees of accuracy.

2. HIGH TEMPERATURE LIMIT o. THOMAS-FERMI
THEORY

Thomas-Fermi theory has been applied to compute equations of state at finite
temperature by Feynman et al.3 They begin with an application of the statistic-l
analysis of Fermi and Dirac which leads to the equation

0 2 4-p 2dp/h3 (

JP exp[(p2/2rn - eV)/IkT + 77] + 1'

where -eV is the potential energy. We follow them in defining for convenience the
auxiliary functions

y 7y1 dy (2.2)/I(,00= exp(y-0)+1

Then one uses Poisson's equation to determine V(r). It yields

2 dr2(rV(r)) = -- e(2nkT)'I1 eL r 77) (2.3)

1. 22 (Lr IcT

Note that in the case of no interaction that the right-hand side of (2.3) vanishes (e=O)
and so the equation implies that V = a + b/7 where a and b are constants. In order to
simplify the above equation, Feynman et al.3 introduce dimensionless variables. First
they define a length scale,

c = , 4< (2.4)3272e' 2 nkT)3 c

where s = r/c. Then since 7/ is independent of r, (2.3) becomes

d2#

where
,61. = (cV(r)/kT) - 7. (2.6)



The boundary conditions of (2.5) becone, as at the origin V(r) must behave as Ze/r,

fl(O) = (.= Ze 2 /kTc ,x T - 24. (2.7)

The schcine employed is to suppo.SC that each atom is confined to a sphere of volume
cqual to the volune per particle. This is clearly an approximation. The other bound-
ary condition is to rcquirc that hc numbcr of electrons in the sphere is exactly cqual
to the nuclear charge. A little nmanipulation serves to show that the condition,

dl?"- -- #I/s at s = b, (2.8)
ds

imposes this normalization in the spherc of radius r = cb. Feynman et al.3 derive,
among other things, the formula for the pressure as

2 b3  
(2.9)Pfl/N = (ZkT).---I , (2.9)

where fb is the value of 3 on the boundary s = b.

In a parallel way we may set out the corresponding formulae for the ideal Fermi
gas. In this case the electron density is simply given by (2.1) with e = 0. As q
is independent of r, one sees immediately by (2.6) that the equation for the density
(2.5) is simply satisfied. Since by (2.4) and (2.7) both the length and magnitude scales
depend on the electronic charge c = 0, the normalization equation (2.8), in leading
order, is automatically satisfied, and so does not determine the number of electrons
in this limit. Returning to (2.1), we may impose the normalization condition by
integrating the density over a sphere of radius r. It gives

Z_= 16-,r2 1, 2_0 ) (2.10

3 [J h2I

which implies 7. In this limit, the pressure equation (2.9), becomes,

P 2/N = 2(ZkT) ( ) (- 1 ), (2.11)

a parametric expression for the pressure in terms of the 71 of (2.10). Note is made
that c3a is independent of the electronic charge e = 0, so this form is valid in this
noninteracting limit. Comparison with the results of Huang' for the ideal Fermi gas,
reveal complete agreement, when it is remembered that for our case the spin, s= -1.

Now we are ready to consider the "hot curve" limit of the Thomas-Fermi theory.
In the basic equations of the theory, (2.5, 7-8), we make the following change of
variables,

= s/cs, - 3 (2.12)

We thus obtain

d a dxa (l ) (2.13)

7(0) = a23 (2.14)

d-y = -, at the boundary. (2.15)do" a7



n1i the limit o' - 0 (by (2.7) this limit is equivalelt to T --+ oo), we obtain the result
that -y = Aa solves (2.13-15). Again, as at (2.10) above, we have an undetermined
normalization constant to be determined because in our high-temperat.ure limit (2.15)
is, satisfied automaticAlly. Again referring to (2.1) we obtain the normalization con-
dition,

Z 1 2 - - () (2.16)

which determines A and thus the solution of (2.13-15). When we note the comparisor
A = -q, we find that this limiting solution is the same as the one we obtained for
the ideal (noninteracting) Fermi gas. This result completes our demonstration of the
proposition that the "hot curve" for Thomas-Fermi theory is the ideal Fermi gas!

2. PROPERTIES OF THE IDEAL FERMI GAS

The basic theory of the ideal Fermi gas is d. ibed by Huaag. To establish a
correspondence between the results of the previous section and more standard nota-
tion, we note that in (2.16) 7/ = A; therefore we introduce the notation z - e-A
We can then rewrite (2.16) and (2.11) as

ZN Z3Z (,2-,mkT32 zy~c Ydy-- r3 =1- X/7-- 1 + Ze-Y
P = r n kT)' 4 1-0 zYr'1-dY' (3.2)

(3.2

kT=\ 112 TX37o 1+ze-y'

where P is the pressure due to the electrons only and does not take account of the
effect of the motion of the center of mass of the atom. If we introduce the further
notation,

A= ( hkT) (3.3)
00 1 00(l~+

f9-(z) 2 -' -z (1 ' (3.4)

4 fOzy(ze-Ldy 0 -1)'+'zt (3.5)2 z-3 +Y';- z~ 2

where the series expansions are convergent for Ijz < 1. we may now rewrite (3.1-2)

ZNA3

-2 = f:1(W, (3.6)

and
_- - - 2 A (z) (3.7)

ZNkT f,(z)'

where C is the de Broglie density. The procedure to calculate the pressure of the ideal
Fermi gas is now, in principle, quite straightforward. Eq. (3.6) is solved for z7 and
then that value is substituted into (3.7).

To evaluate these expressions numerically we choose the following method. First
we revert the series expansion (3.6) to give z(() as a series in (. Then we substitute
it into (3.7) to obtain

P( ZNI T g(¢)(3.8)



We have calculated thie !c;Miin; 3G terlub of the scries cXpLDaSiol. The method used is
the clasbical Lagrange formula for the reversion of series.' The only point of difficulty
is that a large numbei of decimal places are lost in tie coiputation in this case. We
ha'e therefore taken the precaution of using at least 5 deciiiial places to carry out
these computations. The results ar listed in Table 1.

TABLE 1. (Pf2/ZNkT) as a series in the de Brogiie density

0 1.0000000000 0000000000 0000000000 0000000000 O0000000000000000E+000
1 1.7677669529 6636881100 2110905262 1225982120 8984422118509147E-001
2 -3.3000598199 1683655758 8617889323 87S0328003 8917ii39305782E-003

3 1.1128932846 6542504524 9253533917 1305775999 1375768224181E-004
4 -3.5405040951 9736538278 3050093233 4626176046 46439677965E-006
5 8.3863470395 6925729619 7125848681 6218474298 427436245E-OOR
6 -3.6620617873 4852703663 1688233937 9045Q07824 8643167E-010
7 -1.0280607154 3957929799 3273512206 9735581999 5254513E-010
8 7.0550978435 7253454626 0275709452 8261969773 09158E-012
9 -2.6859639507 9285424406 0526716388 7926863588 4377E-013
1C 4.0571834908.0612166197 1056127182 3091151601 35E-015
11 2.7970439770 9162019148 3071234746 1358106846 6E-016
12 -2.8379673439 5952590529 6631787032 9726025304 E-017
13 1.3992940717 5922219970 7552151122 203412696E -018
14 -3.6303052861 0821033013 0082398676 2418074E-0 20
15 -6.0257400821 7251347692 8112664253 67093E-022
16 1.2989538153 2549763684 7035089386 73544E-022
17 -8.1719971340 6344259697 7319803759 795E-024
18 2.9413082494 4946667164 3606073469 73E-025
19 -2.0285711098 2088612486 4658243931 E-027
20 -5.7410636166 7615749309 984730023E -028
21 4.8461575378 3763503589 33968480E-- 029
22 -2.2369786852 5871386652 1846940E-0 30
23 4.7888680538 7474310454 78772E-032
24 2.0304880286 8391265410 8553E-033
25 -2.7811009124 7360566430 414E-034
26 1.6149810555 1163427972 12E-035
27 -5.2554355032 5730228297 E-037
28 -1.3309033541 33284697E- 039
29 1.4721238409 86015824E- 039
30 -1.1062516681 9956070E-0 40
31 4.7267873838 86169E-042
32 -7.6386716803 536E-044
33 -6.5324794996 62E-045
34 7.1193401844 5E-046
35 -3.8268661579 E-047
36 1.097950074E -048

The above series expansion was derived for Izi 1, but the above series plainly
corresponds to a larger range. In the limit as z --+ oo Huang shows that

f2(z) _ -)(logZ) logz + + O(z- (3.9)

From the identity,8 z--fE(z) = fa(z) one can easily also derive the asymrptotic be-

havior of fk(z), and thus from (3.7) the asymptotic behavior of g((). We obtain,
22

5) 4 as -- . (3.10)



With this informaton and the series of Table 1, we may construct a two point
Pad6 approximant 1 ° to [g(()]' of the form [N + 2/N] which is exact through order
(2A'+1 at the origin, and is also asymptotically correct as (- oo. We find excellent
cor .ence for this method and that for 0 < < oo we get an accuracy of about 0.1
per ior g(() from the approximation,

1 + 0.61094880( + 0.12660436 2 + 0.0091177644((1
g(() 1+ .09S01+ .S1S3 J. (3.11)

1 + 0.080618739(

Thus the total pressure would be (including the center of mass motion)

P kT + Zg()) (3.12)

In the case where the temperature is fixed and Q -4 co, the low-density imit, not only
does the Debye density go to zero, as required to obtain the ideal Fermi gas limit of
Thomas-Fermi theory, but also ( -- 0. In this case, as g(O) = 1, (3.12) reduces to (1.1)
and thercby supplies an alternate derivation of the low-density limit of Thomas-Fermi
theory.

As Huang s points out, the internal energy, U, for this case follows simply from
(3.12) as,

U= 3Pn. (3.13)
2

Epstein" shows from the thermodynamic relation dS = (dU + PdV)/T, the
above results, and Nernst's heat postulate that the entropy of the ideal Fermi gas is
simply given by

Se = ZNk (2g()- logz()), (3.14)

where the limit as T --+ 0 is the limit ( -- oo by (3.6) and as Epstein further points
out S, -* 0 in this limit. If we add the contribution of the motion of the center of
mass to the entropy, we get

S = Ak -(Z + 1) log C + 5 + Z ( g() - log[z(O)/() + constant, (3.15)

The Helmholtz free energy is now given directly by A = U - TS. The Gibbs thermo-
dynamic potential is also directly given and is G = U - TS + PQ.

It now remains to give a representation of log z(() = log + log[z(()/(] to
complete the representation of the thermodynamic quantities for the ideal Fermi gas.
Since log z - ( , the problem of deriving a representation for log[z(()/(] should
be similar to that of the representation (3.11). We give in Table 2 the necessary
series coefficients in ( for z(() to work on this representation, but we will leave it for
the future. Thermodynamic consistency depends on the equation between the two
representations

g() + M = dlogz(() (3.16)d(16



TABLE 2. The fugacity z as a series in the de Broglie density

1 1.0000000000 0000000000 0000000000 0000000000 00000000000000000E+000
2 3.5355339059 3273762200 4221810524 2451964241 7968844237018294E-001
3 5.7549910270 1247451636 1707316601 4181450799 416243291041327E-002
4 5.7639604009 1025440341 8852781947 0758923518 58214221729707E-003
5 4.0194941515 2300959555 6172119656 7773364832 0998466829345E-004
6 2.0981898872 2604799054 4860297423 5099614729 957102872728E-005
7 8.6021310842 6030566004 3913343164 3181688359 0277772573E-007
8 2.8647148623 7664872936 8242210245 0573640824 266032220E-008
9 7.9528314678 5241689019 4817612245 1032872937 5035650E-010

10 1.8774425910 0567756220 4988130993 7541387605 437996E-011
11 3.8247968264 1809029592 4653344686 7070280382 2264E-013
12 6.8432943010 1907998578 8027623030 3596055059 29E-015
13 1.0762104093 0537917245 5417733813 6774703889 3E-016
14 1.5124110216 1988369105 9052478125 978137640E -018
15 2.0715738792 9770436279 3713783632 7032961E-0 20
16 1.3846671521 9900108771 8574969994 14568E-022
17 5.3288541784 7605238410 1301497951 755E-024
18 3.5079551301 2368023505 6432045696 E-027
19 -5.9656175104 9257472195 3065263300 E-027
20 5.2969138512 2627670501 874181389E -028
21 -2.5226985875 2718441504 10473445E- 029
22 6.0209616883 8744484633 512535E-03 1
23 1.8543035351 4383646428 76522E-032
24 -3.0176817670 7158240262 6353E-033
25 1.8757233170 6238133052 809E-034
26 -6.7714760730 2256395698 9E-036
27 3.7182598930 255841378E -038
28 1.4954203444 742341364E -038
29 -1.2728642729 9966' )53E- 039
30 6.0377265821 589225E-04 1
31 -1.3644496192 99721E-042
32 -5.3539191733 757E-044
33 7.8650740191 78E-045
34 -4.7690907071 OE-046
35 1.6535692458 E-047
36 -2.3890246E-0 50
37 -4.2646358E-0 50

An alternate procedure would be to determine z(() directly from this equation
subject to the boundary condition lim- 0 z(()/( = 1. This equation is an identity in
the exact theory and not an extra condition.

From the theoretical point of view the most satisfactory proceedure would be to
construct a sufficiently accurate representation of, say, the Helmholtz free energy A
that would piovide adequately accurate derivatives (-)T = -P, and (2-)v = -S.
Using (3.13), (3.15) (ignoring the contant), and integrating (3.16) we have for the
Helmholtz free energy,

A =- PS + (Z + 1)NkT log ( + ZNkTlogiz(()/(]

-NkT [(Z + 1)(log -1) + Z 10I7)- 1I1 771 (3.17)

for which the series expansion in C can be easily derived from Table 1. The inability
to assign an absolute entropy for the ordinary ideal gas, leaves A uncertain by a



line"ar 1(rmn in T. It r-inains to te seen which of thc plioccdures outlined above are
computationally most cfficient.

4. COMPARISON OF IDEAL FERMI GAS TO
THOMAS-FERMI THEORY

We now show the extent of agreement for aluminum between the ideal Fcrmi gas
and the Thomas-Fermi theory. We use the computer programn of D. A. Liberman 12

to compute the T-F numbers. We present the results in the figures as contours of
percentage differences (electron properties only).

For the pressure, Figure I shows in temperature-density parameter space the
1%, 10%, and 30% contours, as one goes from the top curve of the figure to the
bottom, respectively. The expected feature is that for high-temperature and/or low
density the ideal gas is accurate. The 10% contour, for example, will serve as our "hot
envelope," that is to say, the limit of the validity of the "hot curve" approximation. For
low-temperature and high-density the ideal Fermi gas is again a good representation
of the T-F theory because the electrons are being forced to the pressure-ionized,
degenerate, free electron gas. Since as the density increases the kinetic energy per
atom is forced by the Pauli principle to increase proportional to the density to the
two-thirds power (relativistic corrections are ignored here) and the potential energy
is expected to increase only as the one-third power of density, the free-electron-gas
energy becomes dominate. This effect is begining to be evident in the behavior of the
30% contour. The ranges of temperature and density shown are those of interest for a
great many applications. Thus the ideal Fermi gas well reproduces the T-F pressure
over a substantial region.

5
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Figure 1. Pressure contours.
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Figure 2. Energy contours.

Figure 2 shows the results for the internal energy. Here we see only the 10%
and 30% contours because the ideal Fermi gas does not represent the T-F energy as
well as it does the pressure. This result is at least partly due to what, in effect, is
an extra term present in the T-F energy and not in the T-F pressure. The bound
electrons do not contribute to the pressure but do have a large effect on the energy, for
the temperature and density both small. Since the free gas has no bound electrons,
there is more difficulty in matching the T-F energy. However, there is again a "hot
envelope."

We did one other study that was beyond our original intent. Our goal is really
not to find an analytic representation of the T-F theory, but to obtain a fit to the
T-F with the zero-temperature isotherm subtracted. Thus it is of interest to compare
just such a result to the ideal gas with its zero-temperature isotherm subtracted. We
expect an even better coriespondence between these pressures, with exact agreement
both at low-density/high-temperature and zero temperature. Figure 3 shows again
the 1%, 10%, and 30% contours for pressure and indeed there is improvement over
Figure 1 with the "hot envelope" now at lower temperatures. We do not show the
contours that appear at low temperature as they are not of interest to us in this
study. The odd vertical steps arise because really the tw'o contours at that point
loop back under themselves and come back to the lower curves due to the forced
agreement at zero temperature. We did not put in these loops because we felt that
was a misrepresentation of the high-temperature behavior.

The energy contours with zero-temperature isotherm subtracted are not pre-
sented because the results did not turn out as well as for the pressure. This result is
again caused by the absence of the bound state energy in the free Fermi gas.

In general we see the "hot envelope" and reasonable agreement between the free
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Figure 3. Pressure contours for the zero temperature isotherm subtracted.

Fermi gas and T-F theory for a large region of pressure. We understand the difference
between the pressure and internal energy.

This work was performed under the auspices of the U. S. Department of Energy.
In addition, one of the authors (G.B.) is happy to acknowledge partial travel support
from the U.S. Army Research Office and from Fundunesp to permit his attendence at
the XIII International Workshop on Condensed Matter Theories.
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INTRODUCTION

Theories of electron correlations in condensed matter systems with a high degree of density vari-

ation and/or electron localization may be tested in many-electron atoms and ions, where nearly exact

correlation energies are known. We have adapted the inhomogeneous, non-local Feenberg-Jastrow Euler-

Lagrange theory developed by Krotscheck and his collaborators", 2 to apply to atomic systems. Correla-

tion energies for four electron and ten electron closed shell atoms (Be and Ne, respectively) are in good

agreement with the known results. We also calculate the pair correlation functions, which are found to

exhibit an extreme sensitivity to the location of the pair of electrons within the atom.

In the next section we define the theory and the approximations which are necessary within the

theory A more complete discussion of this theory in the context of other inhomogeneoms qupwltum fluids

is given by Krotscheck et al. elsewhere in this volume.

The third section contains the results of this work for Be and Ne. We conclude with a brief

discussion.



FEI:hBI:(G-JASTROW EUILEF-LAGIANGE TIIEORY OF INHOMOGENEOUS QUANTUM FLU-

IDS

The Ilamiltonian for an inhomogeneous system is

N N

11=- EV?+v(r,)+Z V2(rij),(1
i i i<i

where vi (r) is the external potential, v2 (r,.) is the two-body potential, and N is the number of electrons

in the system. In the present case, vl(r) = -Z/r where r is the distance to the nucleus, and v-"(r) = I/r,

where we use atomic units (h = c = m = 1), and the nucleus is taken to have an infinite mass.

The Jastrow-Feenberg wave function space is defined by:

l') = exp {1 [1uI(ri) + E it2(rr) } I) (2)

where 1I)) is a Slate. determinant of one body orbitals which are mutually orthonormal, and ul(r) and

u2 (ri, ri) are the one- and two-body Jastrow pseudopotentials. Each of these functions is determined

by functional variation to minimize the energy expectation value, E:

6E 6 (41HIY)= 0  (n =1,2) (3)
U, = 6-u ('R1F) =

The optimal ui (r) depends solely on the choice of the single- particle orbitals Oi which which are solutions

of the correlated Hartree-Fock equation:

+ "2" Ue.t (r) + Vi(r)]Oi (r) +J dr'V(rr')pl(r,r') i(r') -- cii(r), (4)

where 1/11(r) is the generalized Ilartree potential, Vg(r, r') is the exchange/correlation interaction, and

Pi (r, r') is the one body density matrix of the wave function.

The two-body Euler-Lagrange equation involves the two-body Jastrow pseudopotential u2 (ri,r,)

and the pair distribution function g(r, r'), defined by

g(r 1 ,r 2 )pj(rj)pl(r2 ) = N(N - 1)f dr3 ... d3rNtl'(r, .. ,r,)1 2 ,
f d rI... d3rNI'I'(rl, ...,rAr)1'(5

,where pl(r) is the one-body density of the system, as well as other diagrammatically defined two-body

and three-body functions.

The chief remaining task in the formal theory is to find a tractable relationship betwcen the ingre-

dients of the wave function (4), ul (r), and u 2 (r,, r)) and the derived quantities such as the density, pair

distribution function, exchange/correlation energy, etc. For highly correlated systems, this is achieved

using the fermion version of the hypernetted chain resummation (FHNC), which then requires an ap-

proximation for manageable calculations. In this work we use the minimal acceptablc approximation,

FIINC//0, whose chief ingredient is the "direct" two-point distribution function gdd(r, r'), which is one

plus the sum of all direct two-point Born-Mayer type diagrams where there is no exchange between

the two external points (r,r') with any internal points. Thus gdd(r, r') is a renormalized version of

exp(u 2 (r, ?')), and Pdd(r, r') = gdd(r, r') - I can be viewed as the dimensionless correlation hole around



a particle at r' as a function of r. In the FIINC//0 approximation, the pair distribution function is given

by

g(r,r') = [1 + rdd(r,r')]{F(r,r') + 1 fSF - f'dd SF - Pl (r,r')}, (6)

where SF(r, r') and gF(r, r') are tht structure factor and pair distribution function of the uncorrelated

state 1 P). [A * B](r,r') means the convolution integral of the two two-body functions, and the tilda

above a function is defined by A(r, r') = \/,TrA(r, r')./jr).

RESULTS FOR Be AND Ne

The energy of atomic systems is almost entirely accounted for by Ilartree Fock. Correlations in

electronic systems are significant only for low density regimes, which means the outer part of the atomic

systems. The correlation energy E, is defined as the difference between the total energy ETOT and the

Ilartree Pock energy EF:

Ec = ETOT - E,1F (7)

This correlation energy consists of two parts. a positive contribution which comes from the fact that

the single particle orbitals b, are solutions of the correlated Ilartree-Fock equation, and thus are not

the best uncorrelated Ilartree-Fock orbitals, and the remaining contributions which arise primarily from

the difference between the particle-hole interaction and the bare Coulomb interaction, as well as the

differences between the fully correlated g(r,r') and the uncorrelated gF(r,r'). This latter negative

quantity exceeds the positive Hartree Fock shift, giving a total negative value for the correlation energy.

This correlation energy is of the order of 1% or less of the total energy. Nevertheless, Clementi and

Veillard' have obtained this energy from experiments on four and ten electron atomic systems. Their

results, shown in the Table, have been corrected for center of mass energy and relativistic effects, and

thus can be compared directly to our results for non-relativistic atoms with an infinite mass nucleus. It

is seen from the table that our results are in good agreement with these experiments; some differences

should be expected from the FHNC//0 apprximation, which produces approximately 10% errors in the

case of jellium.

Table: Correlation energies for Neon and Beryllium atoms in atomic units. a: ex-

perimental data3 ; b: present work; c: LSD results4; d: generalized gradient

expansion of LM'; and e: generalized gradient expansion of Perdew'.

a b c d e

Be -0.0944 -0.096 -0.224 -0.099 -0.094

Ne -0.39 -0.33 -0.74 -0.41 -0.39

The density profile of these atoms is very close to the Hartree Fock densities, although the small

differences which appear in the low density tail of the atoms is a significant effect in the correlation

energies.
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Fig. Ia. g(r,r') in Neon for an

electron located at the origin, i.e.

=0 a.u. x = rr -r is the

projection of r on r' and y 0
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center is at the origin. AtomicQ. . 2Ss
units are used.

Fig. lb. Same as Fig. Ia for a

particle located a distance 1 a.u. QU -S s

from the nucleus

0

Fig. ic. Same as Fig. Ia for a
Q .2

partkie, located at a distance 2 a. ~U. 1  SO

u. from 'lie nucleus.
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Fig. 2a. Same as Fig. lb for

the Itartree-Fock approximation 1.25

Fig. 2b. Same as Fig. lb ".s '- r

for tthe correlation contribution X "2s
gdd(r,r, ) = + rd r.

The pair distribution function is a familiar too] for examining two-body correlations in classical and

quantum fluid systems, and gives a similar but mpore complex view of these correlations in inhomogeneous

systems. The spherical symmetry of closed shell atomic systems simplifies the exhibition of this structure

somewhat. Thus g(r, r' ) depends only on the distances r and r' from the origin and tihe angle between

the two vectors. In Figure I we present this function as a function of r for fixed r' , where the origin (the

nucleus) and r' define the x axis, and g(r, r' ) is plotted above the plane defined by r and r' . (For the

spherical atom, all such planes are equivalent). It can be seen in Figure I that the exchange-correlation

hole (the depression of the value of g(r,r') as r approaches r') becomes increasingly important as r'

increases into the low density tail of the atom. 'Of course even the Hartree Pock result must contain

an exchange hole by the Pauli principle, so the question of how much of the exhange-correlation hole

can be attributed to exchange-k, e., s.,atistical correlations) and how much to correlation (i.e., dynamical

correlations) requires further examination. Fortunately, as Eq. 6 shows, these effects factor tc a vry

good approximation. Thus g(r,r ) is approximately the product Of gd(r,r') and gF(r,r'), where thc

former is dominated b% dynamic correlations and is I if the fr-bodm interaction vanishes, and bc latter



is the free particle pair distribution function, therefore containing only statistical correlations. These

two quantities and g arc each shown in a particular case in Figure 2, where it is seen that these two

factors each make their own distinct contribution to the exchange-correlation hole as well as the rest, of

the two- body structure.

One version of the local density approximation is obtained by approximating g(r,r') by

gq(Ir - r'I, (P),r,), where gj(r,p) is the pair distribution function for jellium at density (p)r,,,, which

is some representative density in the vicinity of the two points r, r', e.g., the geometric or arithmetic

average of p(r) and p(r'). It is clear from the figures that these approximations are not appropriate for

g(r,r'); indeed, it also fails for g-(r,r').

DISCUSSION

Small atoms provide one of the most stringent tests of a theory of electron correlations, since thc

density falls verN rapidly to zero away from the nucleus. Consequently our results for neon and beryllium

are very encouraging. Preliminary results for other closed shell four and ten electron systems (Ne+6,

Mg+2 , and Ca+ °) are similarly encouraging. In principle, the theory can also be applied to open shell

systems; however the lack of spherical symmetry will require additional effort.

It is abundantly clear in these simple systems that the local density approximation is inadequate

for the correlation energies. This was expected by those who introduced this approximation and was

demonstrated by comparisons between LDA theories4 and experiments for the four and ten electron

closed shell atoms as is seen in the Table. It is also seen there that adjusted gradient expansions'' 6 give

agreement with experiment which is comparable to our theory. However it was necessary in each of

these gradient expansions to fit the data either at one atom (Perdew6 adjusts his theory to fit Are) or

to several systems (Langreth and Mehl5 , who fit Be, Ne+s, and Are); an unadjusted gradient expansion

actually gives worse agreement with experiment than the LDA. Thus we conclude that the 3astrow

Euler-Lagrange theory is a very promising method for including none-local density effects in atomic and

molecular systems.

Since this theor. is also a theory of the pair distribution function, it provides much information

about the two-body structure of the system, and permits a fairly clean separation between dynamic

correlations and statistical correlations.
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INTRODUCTION

One of the most exciting prospects on the current nuclear scene is the promise that
precision high-energy electron scattering experiments will reveal new (and perhaps unfore-
told) aspects of nuclear structure and dynamics. The search is on for distinctive signatures
of subnucleonic degrees of freedom, and especially fo& manifestations of the underlying
quarkic substructure of nuclei. However, to reach any definite conclusions regarding such
effects, it is necessary that we know, with precision, the values which are predicted for the
measured quantities by the conventional picture of nuclei. In the conventional picture, a
nucleus is composed of nucleons alone, moving nonrelativistically. The nucleonic consti-
tuents are considered to interact via bare potentials which reproduce the few-nucleon data
while obeying certain constraints imposed by fundamental symmetries and by meson-
exchange theory. Even at this rather superficial level, one is confronted with a very
difficult many-body problem, essentially nonperturbative because of the strong short-range
interactions among the nucleons. It should therefore be no surprise that mean-field theory
(in old language, the shell model) fails in experimental settings where large momentum
transfers take place and the high-momentum components of the nuclear wave function are
being probed. A proper understanding of the quantitative implications of the conventional
nuclear picture requires a careful and coherent treatment of the fine-scale spatial correla-
tion structure and the collective properties which emerge from solution - or approximate
solution - of the m any-nucleon Schr6dinger equation of the nucleus. Only when this
refined microscopic description is achieved, and the conventional picture still found want-
ing, can a legitimate claim be made that the relevant experiments have penetrated t, a
more fundamental level of nuclear hadronic dynamics.

One focal point of the ongoing refinement of conventional nuclear theory is the longi-
tudinal response function RL(q,O) of heavy nuclei in the quasielastic regime. In treating
this property, mean-field theory has proven inadequate and it is necessary (but perhaps not
sufficient) to incorporate the dynamical correlations among nucleons in a consistent and
accurate manner. A microscopic understanding of the dynamic structure function S(qo)
of the hypothetical problem of infinite, symmetrical nuclear matter should yield valuable



insights into the effects of correlations in the observed longitudinal response. In particular,
Fantoni and Pandharipandel have argued for an approximate proportionality of RL(q,wo)
and S(q,o) at large q, the proportionality factor being given by the absolute square of the
proton form factor (see also Ref. 2).

The work of Fantoni and Pandharipandel and Fabrocini and Fantoni,2 based on the
method of correlated basis functions (CBF),3'4 represents a substantial advance over all
previous efforts on this problem, providing state-of-the-art evaluation of the longitudinal
response function of nuclear matter (and more directly, its dynamic structure function
S(q, co)), with a realistic two-nucleon interaction and simulated three-body potential as
input. Within the CBF scheme, the calculation was performed, roughly speaking, at the
Tamm-Dancoff level. The correlated random-phase approximation '6. 4 (CRPA), which
performs the ring sums within CBF perturbation theory, opens the way for considerable
improvement of some aspects of this calculation, particularly at the lower momentum
transfers where the effects of the particle-hole force are most evident. In this paper we
present an initial application of CRPA theory to infinite nuclear matter. The goals of the
calculation are modest: Preliminary to a full calculation with a realistic nucleon-nucleon
interaction with elaborate state-dependence, we shall explore the predictions of CRPA for
a simplified model of the nucleon-nucleon interaction which has frequently been used as a
test case, namely the v 2 potential.7 Moreover, we shall apply a simplified, local version of
CRPA which has proven successful in applications to spin-polarized liquid 3He and the
electron gas. It is found that this approach already leads to results of qualitative or semi-
quantitative value, which may be systematically improved as the techniques of CRPA, and
more generally the CBF theory of dynamical response, are further developed.

In a broader context, microscopic evaluation of the density-density response function
l'I(a, o) of nuclear matter (whose imaginary part gives S(q, co)), together with consistent
evaluation of the self-energy Z(k,E), yield fundamental information about the elementary
excitations of this hypothetical hadronic system. The properties of collective modes,
typified by the zero-sound dispersion relation, may be extracted from fI(q, co), while the
nature of single-particle excitations is revealed by X(k,E), from which one may derive an
energy-dependent effective mass. These properties have obvious importance for a deeper
understanding of nuclei. They are likewise basic to a description of the structure, dynam-
ics, and thermal history of neutron stars - being essential to the evaluation of such quanti-
ties as the specific heat, viscosity, superfluid gap, etc. Since empirical constraints on the
properties of neutron-star material are limited in the extreme, such astrophysical applica-
tions make it doubly important to hone and test our many-body calculational methods.

LOCAL CORRELATED RANDOM-PHASE APPR 'XIMATION

The correlated random-phase approximation (CRPA) extends ordinary RPA to
strongly-interacting systems like liquid 3 He, nuclear matter, and nuclei. Since this
approach has been developed in detail in other places, 5,6.4.8.9 we shall only describe its
main features and display the working formulas of a local approximation proposed by
Krotscheck. 6 Here, "local" implies that the particle-hole force is taken to depend only on
the momentum transfer liq = I p - h I in the direct particle-hole channel (apart from
momentum-conserving delta functions). We confine our attention to the uniform, infinite
Fermi medium, for which the appropriate model states are Slater determinants of plane
waves, and complete the specification of the underlying correlated basis by the adoption of
a Jastrow correlating factor F = r1-i jf (rij).

In terms of an irreducible particle-hole (ph) interaction U which CBF theory gen-
erates for a given bare (and possibly singular) two-body potential, correlated RPA for our
problem looks exactly like the familiar RPA for a weak potential, aside from a minimal
energy dependence of U which can usually be ignored. Implementation of the full CRPA



r
approach including exchange nonlocalities is in principle straightforward, but in practice
requires considerable numerical effort, entailing (for example) discretization of the matrix
eigenvalue equations on a grid in momentum space.8 To provide a simpler alternative,
Krotscheck 6 has constructed a local, energy-independent approximation to U which is
designed to preserve certain fundamental relations of the ingredients of U to the static
structure function S(q) of the Jastrow ground-state trial function and to its gi Aphical
derivative S'(q). One of these relations is the optimization condition on the Jastrow pair
correlation function f (r), which reads

8<H >(1)

61nf 2(r)

In this expression, <H >, is the energy expectation value in the Jastrow trial ground state
H1f(rij)(o, where D,, represents the noninteracting Fermi sea. The proposed local approx-
imation to the particle-hole interaction is simply

U(q)=A(q)S-2 (q)+ ,[S-2(q)-S-2(q)] (2)
4m

where SF(q) is the static structure function of the noninteracting Fermi gas and

A(q) = p'd 3 r exp(iqr) A(r) = [S (q)-1] + S'(q) (3)
J 4m

The Jastrow S(q) entering (2)-(3) may be evaluated with good accuracy by solving the
(nonlinear) FHNC/C equations, while its graphical derivative S'(q), appearing in (3), may
be obtained by solving the (linear) FHNC/C' equations. 10 The vanishing of A is equivalent
to the optimization condition. Hence for optimal Jastrow correlations the particle-hole
force U(q) depends only on S (q) and properties of the noninteracting system. For optimal
correlations, the choice (2) for U (q) is just what is needed to regain S (q) from the
density-density response function through the fluctuation-dissipation theorem, if the col-
lective approximation ]71 = (h2q 2 /m)[12 02 -(i 2 q2 /2mSp(q)) 2]- 1 is used for the
particle-hole propagator.6 '11

Having adopted a local particle-hole force, one has quite standard algebraic RPA for-
mulas which lead to the familiar RPA expressions for the density-density response func-
tion and self-energy12.13:

fo (q, co)
fI(q, 'l) = ,o) (4)1 - U(q)l-Io(q,3)

(k, n2) = U(O) + UF~k(k) + ri fd 3q dQ Go(k-q, f -n2,)U 2 (q)F(q, K2) . (5)T.(k f2)= U() + F~k~) +(27E)4p "

In (A), the response function fJo(q, co) is the particle-hole propagator of the free Fermi gas,
i.e., the Lindhard function. In (5), Go is the free single-particle Green's function, U0 is a
constant (related to the chemical potential), and UFock(k) is the Fock term of the particle-
hole force U(q).

The dynamic structure function and the properties of zero sound (if present) are
derived from the relation (4) in the usual manner. Trivially,

S(q,co) = - IIm fl(q, co) (6)

The zero-sound dispersion relation Co = W,,(q) is determined by the roots of the denomina-
tor of (4), i.e. the roots of

I - U(q) RefI 0 (q, c0) = 0 (7)



in the region where Im rlo(q, co) =0. The strength Z,, of the zero-sound mode is given by

Z-'() U2 (q = ReFI 0 (q, co (8)

Note that we are considering only the density channel; more generally a spin-isospin
decomposition can be made, and collective modes other than zero sound can be studied.

A version of the single-particle energy spectrum can be obtained from the self-energy
(5) using the on-shell prescription

Ek = tk + Y_(k, Q) , K2 = tk liek212m . (9)

The on-shell effective mass m* is then given by
(in*) - ' = k- 1 dik/dk (10)

A qualitative shortcoming of the local correlated RPA (LCRPA), seen in the form (4)
of the polarization propagator, is that the effects of dynamical correlations on the continu-
ous portion of S(q,0c), in regions of the (q,0)) plane where Vlo(q, o) vanishes, are not
accessible. It is in fact just such effects which were examined many years ago by Czyi
and Gottfried. 14 Thus any useful comparison with their work is precluded. Although the
(q, (a) domain corresponding to individual lp lIh excitations is the same in LCRPA as in
the free system, the RPA denominator in expression (4) introduces nontrivial correlation
effects in that region; moreover, outside that region, for Imrlo(q,0) = 0, zero sound may
emerge as a distinct collective mode, corresponding to vanishing of the denominator.

Local CRPA will also suffer, at a quantitative level, from the static nature of the
effectiv'- interaction U(q) appearing in (4). By contrast, dynamic screening is known to
be important in the electron gas at metallic densities. 15 Moreover, one does not expect the
momentum dependence of the self-energy to be faithfully predicted within the LCRPA
scheme, especially in the very delicate example of unpolarized liquid 3 He (Ref. 11). In
spite of its shortcomings, LCRPA offers a simple and straightforward microscopic touch-
stone for phenomenological theories of comparable structure, such as the polarization-
potential model.

In the polarization-potent ial approach of Aldrich and Pines, 16 which has been adapted
to nuclear problems by Pines, Quader, and Wambach, 17 the density-density response func-
tion UI(q,co) is expressed in a form similar to (4). However, the Lindhard function appear-
ing in (4) is replaced by a more complicated propagator accounting both for a single-pair
effective mass different from the bare value and for the presence of multipair excitations.
Secondly, tie static, local pailicle-hole interaction fs(q) of this approach is supplemented
by a wave-vector and frequency-dependent contribution (co 2 /q 2 )f.,(q) corresponding to
backflow. Beyond these structural differences there is the important conceptual distinction
that our particle-hole interaction is determined microscopically, whereas the polarization
potentials of the Aldrich-Pines theory are determined by a combination of sum rules and
phenomenology.

RESULTS FOR V 2 HOMEWORK MODEL

Based on the local correlated RPA scheme, we have have carried out a numerical
study of the dynamical response of a model of nuclear matter which is extremely simple,
yet may capture important aspects of its correlation structure. The bare intera'.tion
between the nucleons is taken as the v2 "homework-model" potential. 7 This two-nucleon
potential consists of the central part of the 3S, - 3 D- component of the Reid soft-core
interaction, assumed to act in all partial waves. It has seen wide use in tests of many-body
methods (see, for example, Refs. 18,19). Specifically,



v2 (r) = [9924.3exp(-4.2r) - 3187.8exp(-2.8r)

+ 105.468exp(-1.4r) - l0.463exp(-0.7r)]/(0.7r) (11)

Our calculations are based, primarily, on the parameterized Jastrow correlation factor

f (r) = exp[-Ae-Br(1 -e-rID)1r] , (12)

with parameters which minimize the Jastrow ground-state energy expectation value Ej at
single-particle level degeneracy v = 4 and given density, Ej being computed by the
Metropolis Monte Carlo algorithm.20 Additionally, we have examined the particle-hole
force generated by two versions of the correlation function

f (r) = (1 _ e - r2'b ) n + grme-r 2/lr (13)

studied by Benhar et al.21 In the simpler version (B1), the parameter g, which measures
the overshoot of f (r) above unity, is set zero and the remaining parameters b and n fixed
6y minimization of the energy expectation value truncated at three-body cluster order. In
the other version (B2), the three-body cluster approximation to the energy is minimized
(approximately) with respect to the five parameters b, g, y, n and n, subject to the sequen-
tial (or normalization) condition2 as constraint.

The three correlation functions are labeled (in order) C, B 1, and B2. None of these
choices is optimal in the sense of being a solution of the Euler equation (1). The sequential
condition imposed in the case of B2 is probably too stringent, while B 1 is presumably too
crude a choice, although both alternatives have the virtue of promoting good convergence
of the cluster expansion of the Jastrow energy expectation value. The function C, being
determined through a Monte Carlo evaluation, may provide a decent representation of the
true optimal function, except in the large-r region which contributes little to the ground-
state energy. The deviation at large r will, however, be reflected in the behavior of U(q) at
small q. In particular, it will produce a significant departure of A(q) from zero at low q
values. In the present work, as in Ref. 9, we have chosen to set A(q) equal to zero, since
the behavior of the U(q) at small q is already suspect due to the local approximation itself.
This conforms with a strategy suggested by Krotscheck, 6 who, in considering the Bijl-
Feynman dispersion relation, found that it is a better approximation to assume that the
correlation function has been optimized - even if the actual optimization has not been car-
ried through - than to include the A(q) correction.

Numerical results with the C correlations have been obtained for symmetrical nuclear
matter, i.e., level degeneracy v = 4, at kF = 1.39 fm- 1, corresponding to a density
p = 0.182 fm- 3 near nuclear saturation; and for pure neutron matter, i.e., v = 2, at
kF = 1.75, 2.25, 2.90 ftn 1 , corresponding to three densities p = 0.182, 0.386, 0.822 fm 3

of relevance to the study of neutron stars. For both level degeneracies we have examined a
range of wave-number transfers q from 0 to about 4 fm-1 . Results with B 1 and B2 corre-
lations are available only for symmetrical nuclear matter, at Fermi wave number
kF = 1.4 fm- 1.

For reference, we have also generated nuclear-matter (v = 4) results for the case that
the two nucleon interaction is replaced by a pure hard-core potential of core radius c - 0.5
fm. As in an earlier calculation, 9 where c = 0.4 fm was studied, the simple form

f(r)=0 , r<0,

=1-exp[-It(r-c)] , r>c (14)

is assumed for the Jastrow pair correlation function. An optimal determination of the
parameter i. has been carried out by Flynn23 within the FHNC/C approximation, for both
core sizes (c = 0.4 and 0.5 fin).



We confine our discussion to a selection of results for symmetric--d nuclear matter.
(A more detailed report will be published elsewhere.) The CBF particle-hole interaction
appropriate to the v 2 potential at kF = 1.39 fm-1, for the C choice of f (r), is shown in
Fig. 1, along with the c = 0.5 fm hard-sphere result at the same density. Due to the differ-
ence between the respective correlation functions (the v 2 correlations being slightly
stronger beyond 1 fin), the particle-hole force for v2 is actually somewhat more repulsive
at low-to-medium q's than that for the hard-core potential. Both potentials support a col-
lective mode corresponding to zero sound. In both cases, this mode is found to emerge
from the particle-hole continuum around 0.3-0.4 fm-1 and sink back into it at about 1.53
fm-1.The zero-sound dispersion relation wo7(q) and the strength Zs(q) of the zero-sound
mode are plotted in Fig. 2, for the v2 potential. The corresponding curves for the hard-
core potential are nearly coincident with those for v 2.
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Fig. 1. Wave-number dependence of local particle-hole interaction U(q) for v2 model of nuclear
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It may seem surprising that the effective interaction derived from the soft-core v2
potential is so close to that for the hard-core potential. The concurrence implies that the
two potentials are similarly effective in lifting particles from below to above the Fermi
surface, at least when the momentum transferred to the particle-hole pair is not excessive
and the density is near the saturation value for nuclear matter. In turn this observation sug-
gests that a useful measure of the strength of the particle-hole force may be furnished by
the wound parameter of Brueckner theory, which may be interpreted as the average deple-
tion of the Fermi sea produced by the given bare interaction. Indeed, the w,.jnd parame-
ters for the two potentials (v2 and c = 0.5 fm hard core) are quite similar. As is well
known,18 the Jastrow variational analog of the Brueckner wound parameter is

= d3 r [f (r)- 1]2[1 - v-1l 2 (kFr)], where 1(x) = 3x- 3 (sinx-xcosx). For the C choice
of the correlation function, we have K = 0.232, which is to be compared with the value
K = 0.263 for correlation function (14) with g = -opt = 2.5 fm- 1.

We may carry these considerations somewhat further by examining the curves in Fig.
1 labeled BI and B2. The particle-hole force U(q) for BI or B2 is seei. to differ substan-
tially from that corresponding to correlation function C, being much weaker at smaller q
values (below 2 fm- 1) and somewhat stronger at large q. The large differences cannot be
due to the slight discrepancy in densities (0.185 fm- 1 (BI and B2) compared to 0.182 fm- 1

(C)). Instead, it must be a reflection of the reduction in the flexibility of f (r) entailed by a
procedure employing a truncated cluster expansion, the range of variation being restricted
to functions for which the cluster expansion of the energy is rapidly convergent. The sub-
stantial difference in predictions for U(q) is (as expected) accompanied by substantial
differences in the wound parameters for B 1 and B2, from those for the correlation function
C. The specific values are K = 0.146 (B 1) and K = 0.143 (B2). Our thesis that. the wound
parameter is a major determinant of the overall behavior of U(q), gains additional support
from the observation that correlation functions B1 and B2, with approximately the same
wound parameters, yield U (q) results which are quantitatively as well as qualitatively
similar. To complete the comparison, we have included in Fig. 1 a U (q) curve for a
c = 0.4 fm hard-sphere interaction at kF = 1.39 fm- , described by means of the correlation
function (14) with . = p-tpt = 3 fn - 1. The corresponding wound parameter is K = 0.139.
Once again it is seen that correlation functions with similar wound parameters yield simi-
lar iesults for the particle-hole force U(q).

The discussion now focuses on the results obtained for the C choice of correlations.
The dynamic structure function S (q, (o) of the v2 model of nuclear matter, derived from
the LCRPA treatment, is plotted as a function of energy transfer licio in Figs. 3-6, at fixed q
values of 1.47, 2.03, 2.76, and 3.87 fm- 1, respectively. These choices for q are close to
values at which experimental data on the longitudinal response function RL(q, Co) of
medium- and large-A nuclei are available 24- 26 and/or are (reasonably) close to q values
examined in the microscopic calculation of Fantoni and Pandharipande.1 In the figures we
trace, for comparison, the Fermi-gas structure function SF(q, co) as well as the LCRPA
result for the c = 0.5 hard-core. It has been argued by Fantoni and Pandharipande that the
longitudinal dynamic structure function SL(q,co) of nuclear matter should not be very dif-
ferent from S(q,co) over the range q = 1.5-2.8 fn-1, and, accordingly, that the theoretical
nuclear-matter S(q,co) multiplied by the square of a suitably chosen proton form factor,
may be sensibly compared with the experimental response function RL(q,co) of heavy
nuclei (cf. also Refs. 2,27). At a deeper level, such comparisons exploit the generally
accepted view that meson-exchange currents, pion production, delta excitation, etc., should
not be very important in the longitudinal response function, for the q values considered
here.28 In this view one must look elsewhere for a dramatic breakdown of the conven-
tional picture of the nucleus as a nonrelativistic many-body problem with only nucleonic
degrees of freedom.
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As seen in Figs. 3-6, the LCRPA calculation shows the well-known quenching of the
response at low energies, compared to the independent-particle-model result.28"3° This
effect is perhaps too severe in our results at the lower q values. The predictions for S(q,(o)
are very similar for v2 and hard-core potentials, suggesting that the response in the
relevant q regime is insensitive to the choice of bare, state-independent central potential,
provided the wound parameter is kept roughly the same. For a given q, the strength is
shifted to values of hco higher than the experimental peak energy. This effect, as well as
the excessive quenching at low co, is presumably due to the overly repulsive character of
the v2 and hard-core potentials, which act equally in all partial waves, in contrast to the
strong partial-wave dependence of realistic nucleon-nucleon interactions. Indeed, in the
cases q = 1.47 fin 1 and q = 2.03 fm -1 (corresponding respectively to 290 MeV/c and 400
MeV/c), there is a very pronounced peak at the upper end of the allowed range of energy
transfer, which is rather unphysical. As mentioned earlier, aside from zero sound, the
LCRPA gives no response outside the (q, o) region relevant for the noninteracting system,
so the strength which would otherwise be distributed to higher energies seems to be "pil-
ing up" at the high-3 boundary. The similar trends seen in the results of Fantoni and Pan-
dharipande and of Pines, Quader and Wambach are much milder. As we go to high q, the
departures of the LCRPA result for S (q, ca) from the Fermi gas curve, and from the micros-
copic prediction of Fantoni and Pandharipande, become less noticeable. This is an obvi-
ous consequence of the decreasing importance of U (q) at larger momentum transfers.
Since, quite generally, we may expect the particle-hole force to become negligible in the
large-q regime, predictions for S (q, co) should be relatively insensitive to the choice of the
bare interaction, or to the treatment within conventional nuclear many-body theory, at
large enough q. Of course, excitation of subnucleonic degrees of freedom may become a
significant factor in this domain.

For symmetrical nuclear matter at kF = 1.39 f - l , a preliminary evaluation 31 of the
LCRPA self-energy (5) using the techniques of Ref. 32 yields m* = 1.1m for the on-shell
effective mass at the Fermi momentum and shows no significant enhancement of m * (k) in
the vicinity of the Fermi surface (cf. Ref. 33). If the v2 interaction is allowed to act only
in S waves (more appropriate in the nuclear context), a value of rn * (kF) near 0.8m should
be obtained.34 '9

CONCLUSIONS

The density-density response function of symmetrical nuclear matter and pure neu-
tron matter has been studied under simplifying conditions, leading to a microscopic theory
- the local correlated random-phase approximation - requiring as input only the static
structure function corresponding to a Jastrow description of the ground state. This theory
has the virtues of easy application and straightforward interpretation of its predictions.
Relative to an ordinary local RPA treatment, it takes account, approximately, of important
dispersive, polarization, and geometrical effects arising from the strong interactions. In
spite of its limitations, the theory has considerable value in establishing qualitative trends.
For example, it is found that predictions for the dynamic structure factor do not depend
very strongly on the choice of central, state-independent potential, so long as the wound
parameter remains essentially unchanged.

One serious limitation of the theory as implemented here lies in the choice of the v2
model interaction as the bare force. It is well known that state dependence of the nuclear
interaction and especially the presence .of a tensor component have important conse-
quences for most nuclear properties. The dynamic response is no exception, particularly at
low momentum transfer.35 Nevertheless, before proceeding to a realistic interaction like
Urbana or Argonne v 14 , and to the introduction of three-nucleon interactions, the intrinsic
limitations of the local correlated RPA approach should be quantified. As implemented



here for parameterized correlation functions which do not strictly obey the Euler optimal-
ity condition, one such limitation is the neglect of the A(q) term in the formula (2) for the
particle-hole force. We have argued that this is not likely to produce significant additional
errors in the description of the particle-hole interaction, since the correlation function
assumed in our primary calculations (of form (12)) is believed to be nearly optimal. Devi-
ations from optimality will mainly affect U(q) at small q - but in this region the local
approximation must itself be considered questionable. These arguments notwithstanding,
the importance of the A(q) term, for the correlations used here, is currently under numeri-
cal investigation, and optimal correlations will be implemented in future calculations.

The next step is to assess the effects of nonlocalities in the particle-hole force.
Within the CBF description of elementary excitations, this will involve numerical solution
of the full CRPA equations, with explicit inclusion of exchange.8 Such a treatment is
needed to remove the unphysical feature of local CRPA that (apart from possible collec-
tive modes) the response is confined to the (q, co) domain in which the dynamic structure
function of the noninteracting system is nonzero.

A truly quantitative description of the response and elementary excitations in nuclear
systems will require a theory which goes beyond correlated RPA to the explicit inclusion
of correlated multipair effects. Work in this direction has begun.
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INTRODUCTION

The two-body density matrix p2 (ri, r 2 , r/, r') of the ground state of a quantum
fluid is a rich repository of information about its correlation structure. For exam-
ple, the restricted version P, (rl, r 2 , r') = P2(rl, r 2 , r', r 2 ) plays a crucial role in the
description of final-state interactions in a novel theory of the deep-inelastic neutron
scattering from the helium liquids, I capturing the correlation effects which give rise to
deviations from the impulse approximation out to very high momentum and energy
transfers. This contribution will focus on the microscopic evaluation of p2(rl, r2 . r')
for uniform Fermi and Bose fluids. For simplicity, we assume that the ground state of
either system is adequately described by a Jastrow trial function of the appropriate
symmetry.

The formal structural analysis of the two-body density-matrix elements is most
efficiently carried out in the configuration-space representation, and will be pursued
using well-established cluster-expansion procedures, 2 .3 followed by hypernetted-chain
resummation of cluster diagrams.4' On the other hand, the physical interpretation of
the results is more vividly expressed in the momentum representation, i.e.. in terms
of the generalized momenium distribution

n(p,q)= < flal atapai.> (1)- k+q P- "

which is related to p 2(r, r 2 , r,) by Fourier transformation. (Here, k denotes the

single-particle orbital with quantum numbers k, a, where a is the spin projection.
while k - q = (k - q, a).) Using the formal results obtained for the structure of
p2(r,, r2 , r') - involving its closed expression in certain sums of irreducible cluster
diagrams - we have been able to achieve a clean decomposition of n(p, q) into con-
tributions from various scattering processes occurring in the medium. In comparing
Bose and Fermi cases, certain features arising from exchange (Pauli kinematic effects)



will also be evident. Quantitatively, the contributions from these assorted physical

effects are determined by a set of form factors, which are susceptible to evaluation by
hypernetted-chain techniques. We shall present numerical results for the form factors
depending on a single momentum variable, and test the quality of an estimate for
n(p, q) used by Silver i as input for his theory of final-state effects in deep-inelastic
neutron scattering.

The microscopic treatment of n(p, q) will be developed for a Fermi system of
arbitrary single-particle level degeneracy v. The corresponding results for the Bose
case may then be obtained by taking the limits v -- co and kF --- 0+ while keeping
the density p = vkF/6,r2 constant.

The role of n(p, q) in deep-inelastic neutron scattering becomes more tangible
when we write this quantity as

n(p,q) =< IVlpqat_qapI, P > -n(p) ,(2)

where Pq is the density fluctuation operator (with q 0 0) and n(p) is the single-
particle momentum distribution function. The expectation value (2) may be in-
terpreted as a transition matrix element for scattering of a particle out of orbital
P = (p, a') into another orbital P - q = (p - q, o-'), the process being mediated by a
density fluctuation of wave vector q. Thus, an evaluation of n(p - q) amounts to a
calculation of the rightmost single-atom vertex in the Fig. 1.

Fig. 1. Deep-inelastic scattering
k ,of neutrons from a (normal) he-

. lium liquid, involving final-state
interactions mediated by a den-

--q sity fluctuation of the target sys-
tem (a phonon of wave vector q).

STRUCTURAL RESULTS FOR p2(rl, r 2, r')

The ground-state wave function of the N-particle Fermi system, supposed to
constitute a uniform fluid, is taken in the Jastrow-Slater form 'I = C-IIi<jf(rj)4),
where D is the usual Slater determinant of plane-wave orbitals, filling a Fermi sea
characterized by Fermi wave number kF and level degeneracy v, while f(rij) is a
Jastrow pair correlation function to be determined by minimization of the energy
expectation value. The constant C is introduced to normalize XP to unity. The
results to be described below can be generalized in a straightforward manner to the

case that the Jastrow correlating factor is replaced by a Feenberg function. 6

The first step of the formal development is to recognize that the generalized
momentum distribution function (1) may be expressed as follows

n(p, q) = Sqo(N - 1)n(p) + (1 - 8qo) < IFJN(, q) I > (3)

in terms of the one-body momentum distribution n(p) and the expectation value of
a symmetric sum of two-body operators,

N

N(P,q) = -[ei q ' o. _.q,j(j) + e iq 'rioPq,P( i )] (4)
i<j



' .. .. The action of the one-body operator oq,p(i) is srecified by

oP-q,pIk >= qp - , <k'oji.-q, = 6k, j-q<p1 (5)

Standard procedures are available for cluster-expanding the expectation value of a

sum of two-body operators, the most familiar case being the potential energy corre-
sponding to a sum of pair potentials.' These procedures have been applied to yield

explicit results for the cluster contributions to n(p, q) through three-body order, plus
selected four-body contributions. The generalized Ursell-Mayer diagrammatic repre-
sentation introduced in Ref. 2 facilitates the bookkeeping. At two-body order there
are 7 cluster diagrams, at three-body there are 138, etc., the number growing very
rapidly. The analysis becomes more transparent when we go over to the position
representation, inverting the Fourier relation

n(p,q) = I J P2 (rlr 2 r1)e r -r2)drdr2 dr; (6)

to obtain the corresponding cluster expansion for the two-body density-matrix ele-
ments p2 (rlr 2 r1). There is a very simple recipe for accomplishing this digrammati-
cally. One simply removes the arrows representing specific plane-wave orbitals and
changes the field points which they originally intersected into root points. It then
becomes evident that most of the diagrams are reducible (factorizable), i.e., they
consist of products of simpler graphs.

In the context of extensive technical experience with cluster expansions, the
diagrams which have been explicitly generated are sufficient to reveal the structure
of p2(rlr 2r') out to infinite cluster order. An exact representation of this quantity
is provided by the expression

p2 (rlr 2 r') = p2 D(rlr2 r')[L(rlrl) + L(rir 2r')I (7)

The first factor collects the direct-direct portions of the full set of diagrams contribut-
ing to p2(rlr 2 r'). By definition,7 direct-direct diagrams do not have exchange lines
attached to any of the root (or reference) points rl, r 2 , and r'. The complementary
set of graphs contains only diagrams with exchange lines beginning and/or ending
at two or three reference points. Of these graphs, the ones with exchange lines at
two reference points combine to form the two-point exchange factor L(rl r'), while
the graphs with exchange lines at all three reference points compose the three-point
function L(rlr 2 r'). Either of these exchange functions vanishes if any one of the
coordinates in its argument recedes to an infinite distance from the others. In the
Bose limit (v -- oo, k, -4 0+, p constant), the function L(rlr') approaches unity
and the three-point function L(rlr 2r') goes to zero. As expected, only the direct-
direct contribution P2D survives. Returning to (7) at finite v, this component may
be compared, at a diagrammatic level, with the structural result which was derived
for the Bose-fluid p 2(r r 2r ) in Ref. 8. We arrive thereby at the representation

p2D(rIr 2r) = ppID (rlr' )f(jrl-r 2 l)f(Ir -r 2 l)exp[-P(rjr2)-P(r' r 2 )-P(rlr2rl)J
(8)

Thegenerating functions P(rlr 2 ) = P(Jr, -r 2 ) = P(r) and P(itr 2 r') are irreducible
quantities - sums of irreducible diagrams - just as in the Bose case. To give at least
a hint of their character, Fig. 2 shows the leading cluster contributions to these
functions. We may remind the reader of the rcevaat diagrammatic conventions.2 ,8

Open circles represent root points (lower left circle: r1 , lower right circle: r', upper



circle: r 2 ). Solid circles denote field points and imply an integration pf. A wavy
(dashed] line stands for the correlation bond f(r,) - 1 [respectively, f 2(r.6)- 1],
where rab = ira - rbl, and r, and rb are the coordinate points (solid or open circles)
conned -'I by the bond. The diagrams shown explicitly in Fig. 2 are in fact the
same as the leading diagrams which occur for the Bose fluid. However, as in the
familiar examples of the momentum distribution function n(p) and the one-body
density matrix P, (r, r'), additional, non-Bose diagrams will arise from the systematic
introduction of exchange insertions at the field points of the Bose diagrams of higher
orders.7'2 These insertions are characterized by the presence of exchange lines at one
or both end points. An exchange line, drawn solid with an arrow attached, represents
the Slater statistical bond l(kprab), (x) -3x 3 sinx - x cosx.

-Q(r) = 4...

-P() = +" ""Fig. 2. Leading cluster diagrams

of the irreducible direct functions
Q(r), P(r), and P(rlr 2rl) and of

9 the exchange functions Li (r) and

-P(rlr 2r'l)= + L2(r).

Ll(r)= + -2 +.-.

L2(1r)+

The function pID(rlrl) appearing as a factor in (8) is just the direct-direct
component of the full Fermi one-body density matrix pi (r, r'). The structure of p1 D
is well known from previous work. 2- 4 This quantity is generated by the irreducible

phase-phase correlation function Q(rlr') (see Fig. 2, and Figs. 8 and 10 of Ref. 2),
according to

pID(rir') = pnoexp[-Q(rlr') , (9)

where n, = expQ(rlrl) is an overall strength factor.
At this point we have identified three sums of irreducible diagrams, namely Q(r),

P(r), and P(rlr 2rl) (where, and throughout, r -- Jr1 - r2l). As in the Bose case
analyzed earlier8 (and in the more familiar example of the generating function U(r)
of the hypernetted-chain representation g(r) = f2(r)e-U(r) of the Bose radial dis-
tribution function7 ), these functions may be decomposed into nodal and elementary
components. Fig. 2 shows in fact the leading diagrams of nodal type; elementary
diagrams first appear in the next cluster order. In practice, the diagram sums Q(r),
P(r), and P(rl r 2 r') may be evaluated approximately, to all orders, by solving sets

of Fermi-hypernetted-chain (FHNC) equations,7 '4 '5 incorporating, stepwise, larger

and larger classes of elementary diagrams. The simplest approximation, denoted

FHNC/0, involves the neglect of all elementary components.

Fermi exchange effects arise implicitly from insertions at the field points of the



Bose diagrams contributing to Q(r), P(r), and P(rjr 2 rj). Exchange manifests itself
more explicitly in the second factor of the structural relation (7). We now examine
the functions L(r, r') and L(rir 2 r') in more detail.

Consider that, due to the disappearance of correlations at large distances, the
quantity p2(rlr2r') must reduce simply to pp,(rir') when r2 - co. On the other

hand, consider that the one-body density matrix pi (ri, r') is known to have the
structure

2',5

pi(rir'D = piD(rirl)[L,(ri r') + L2 (r r')] (10)

in terms of the direct-direct component PiD of (9) and the exchange functions L1

and L 2 (denoted N, and N 2 in Refs. 2,4). The exchange functions L1 and L 2 are in
turn known, both formally and numerically, within FHNC theory.4,5 The diagrams
contributing to these functions through three-body cluster order are indicated in
Fig. 2. The foregoing considerations, together with the vanishing of the function
L(rlr 2 r') as r 2 -4 oo, lead to the identification

L(r r')= Li(rir')+L2(ri r') (

The structure of the three-point exchange function L(rlr 2rl) cannot be deter-
mined from asymptotic properties; it is instead inferred from the raw results for
the cluster expansion of p2(rlr 2r'), along with the resolution (7). Many diagrams
are seen to factorize, consistent with the following expression in terms of irreducible
diagram sums Pae, Pd-t:

L(rlr2r') = -v-'l()l((')

+ l(r)[Pc(r') + Pdc(rr2r,)] + l(r')[Pc,(r) + Pd(,(rlr2 r')]

+ l(r r )[Pd,(r) + Pd,(r') + Pd,d(rlr2r')]

+ "Crjr2rD) + P,2dc(rlr2r') + P.CC(rlr2r')
- z[Poc(r) + Pdc(rlr 2 r)][Pc-(r') + Pdco(rr.rl)] (2)

The two- and three-point irreducible exchange functions Paf, and Pa.- are clas-
sified according to the presence or absence of exchange lines at the root points.
The category to which a given function belongs is indicated by its subscripts a3 or
ac4)', according to the conventional scheme7: cc (circular), de (direct-exchange), dcc
(direct-circular), ded (direct-exchange-direct), cdc (circular-direct-circular), and cec
(circular-exchange-circular). The direct-direct functions P(r) and P(r r2 r') fit in
the same scheme, with dd subscripts (omitted for simplicity). All of these functiont,
may be separated into their nodal and elementary parts, and the techniques of Fermi-
hypernetted-chain theory invoked for their numerical evaluation. It is to be noted
that the two-point functions P,,6 arise already in the theory of the Fermi one-body
density matrix and have been thoroughly studied within the FHNC framework.4"'5

The requirement that the fully-diagonal portion p2(rlr 2 r1 ) coincide with /)2,(ri 2 ),
where g(r12) is the radial distribution function for the assumed wave function, im-
poses certain relations on the quantities P(r), P(r, r2ril), P,,6, and P namely

-2P(r) - P(rlr2r,) = Nd(r) + Edd(r)

Pc.c(r) + Pd.c(rr2ri) = Ncc(r) + E, c(r)

2Pe,(r) + Pded(rir2ri) = Nde(r) + Ed,(r)

Pcdc(rlr2rl) = Nd,(r) + Ede(r)

Pcec(rir 2r,) = N e(r) + E,,(r) (13)



The nodal (V) and elementary (E) diagram suns on the right-hand side are just
those (with the corresponding subscripts) which arise in the FHNC analysis of g(r)

* (cf. Ref. 7).

FORM FACTORS

We now determine the structure of the generalized momentum distribution func-
tion n(p, q) of (1) by exploiting the structural results (7) (8), (9), (11), and (12) for
the two-body density-matrix elements p2(rlr 2 r') appearing in Fourier integral (6).
To arrive at a decomposition of n(p, q) which accomplishes a clean separation of
contributions from differing physical processes, the function p2(rlr 2 rl) is first de-
composed into a part containing all terms generated purely by two-point functions,
and a remainder in which the terms also depend on the irreducible three point func-
tions,

p2(rir 2r') = P 2 (rlr2r') + P3 (r, r 2r) , (14)

the notation being transparent. The last term vanishes if the various three-point
functions P(rlr 2 r) and Pp.,(rIr2 r') are set equal to zero.

Next, we appeal to the Fermi-hypernet equations resulting from the FHNC anal-
ysis of the one-body density matrix.4' ,5 These equations relate the bare correlation
function f(r) to the spatial distribution functions defined by the direct and nodal
diagram sums Xq<p(r) and NQa,,(r) introduced in Refs. 4,5, Nqdd(r), in particular,
being identified with the nodal part of P(r):

gQdd(r) = 1 + Fdd(r) = 1 + XQdd(r) + NQdd(r)

gcQcc(r) = 1 + Fc,(r) =1 + XQ,,(r) + NQ,,(r)

gQd,(r) = 1 + Fd,(r) = 1 + XQd,(r) + VQd(r) (15)

The hypernet equations read

f()- r) = gQdd(r),

f( 7,)e-P(r)P(r) = v-'l()Fdd(r) + F,,(r)

f(r)e-P(r)Pde(r) = Fd.(r) . (16)

Eqs. (16) permit us to eliminate the bare correlation factor f(r) from each term of
the explicit expression for the decomposition (14), with the results

p2)(rlr2r') = pp1(rxr')gqdd(r)gQdd(r')

+ PPI D(rl r')l(r r' )[gQdd(r)Fd(,') + ,Qdd(r')F,(')J

- vpp1D(rlr ,)1v-1(,)- F,(,)][v1'l( r') - F,.(')] (17)

and
(3) 3 (rr 2 r)= p(2)(rr 2r'){exp[-P(rrr')] - 1)

+ pD(rl r')gQdd(r)gQdd(r')exp-P(rl r2r')]
x [l(r)Pd,,(r' rr, ) + l(r')Pd (r, r2r')

l(ri rI )PdCI(rI r~r') + Perde(r r2r' ) + PVdc(r r' )
grter,) - VPd(rl r2 r' )Pdco(r' r 2 ri)

- vPCC(r)Pdc.(r'r2r,) - vPc(r')Pdc(r~r2r')I (18)



(Here r = jr, - r 21 (as usual) and r' = Ir' - r21.)
Inserting (14) into the integral (6), and using the results (17) and (18), we obtain

the decomposition

n(p, q) = Nrqofn(p)

+ Fdd(q)[n(p) + n(lp - qi)]
+ Fd,(q)[nol(p) + nDl(IP - qj)J
- no{O(kF - p) - Fcc(p)][O(kF - Ip - qi) - Fcc([p - Qi)]

+ n(2)' ( p , q) + n(3)'(p, q) . (19)

Thus, the component n(p, q) - N6qon(p) of the generalized momentum distribution
depending nontrivially on two momenta is written as a sum of (i) separable contri-
butions involving form factors

F,(q) = p f F#(r)eiq'rdr (20)

and either the one-body momentum distribution

n(p) = v - 1 f pl(r)eiP'rdr (21)

a modified momentum distribution

nD(P) = - i f PID(r)l(r)eiPrdr , (22)

or the the strength factor n, [second, third, and fourth terms of (19), respectively], (ii)

a non-separable integral n(2)'(p, q) involving only two-point quantities, and (iii) an-

other three-point integral n(3)'(p, q) generated from the component (18) ofp 2(rlr 2r').
Explicitly, the fifth term is

p(2)'(pq) = I K(rir 2r')e-ip.(rir1)e . )drdr2dr, (23)

where

K(r, r 2 r'l) = pp1 (rjr')FQdd(r)FQdd(r')

+ PPI D(rlr')(rlr')[FQdd(r)Fde(r') + FQdd(r')Fj(r)

- Vp(p 1 D(r, r') - pnol[v-l1(r) - F,,(r)[v-' 1(,") - F,,(r') .(24)

The contribution (23) may be reduced to a three-dimensional integral in momentum
variables.

In momentum space, the sequential relation

I p 2(r, r 2 r')dr2 = (N - 1)p,(rr') (25)

becomes
n(p,q = 0) = (N- 1)n(p) (26)



Specializing (19) to q = 0, and substituting into (26), there results a condition
on the form factors. If we employ this condition in (19) itself, we may recast the
decomposition of n(p, q) in the form

n(p, q) = (N - 1)Sqon(p)

+ (1 - 6qO)Fdd(q)[n(p) + n(lp - q)]

+ (1 - 6qo)Fde(q)[nDi(p) + nDl(Ip - qJ)J
- no(1 - 6qO)[O(kF - p) - Fcc(p)][9(kF - - qJ) - F,,(Ip - ql)]

+ (1 - 6qo)n(2)'(p, q) + (1 - q0)q (3) /'(p, q) (27)

This expression achieves the desired separation of contributions from the various
scattering processes underlying the generalized momentum distribution function (cf.
Ref. 8). The first term reproduces the trivial result for dynamically and statistically
uncorrelated particles (except that the momentum distribution function n(p) appear-
ing in (27) is that for the fully correlated Fermi system). The correlations prevailing
in the interacting fluid permit the scattering of a fermion from orbital 5 to another
orbital P - q, with the intervention of a phonon to conserve momentum. The effect
of this process and the corresponding time-reversed mechanism are described by 6he
second term in (27). The associated exchange scattering effects are embodied in the
third term, which is proportional to the exchange form factor Fd,(q). To interpret the
fourth line of (27), we note that if the particles are noninteracting, but the statistical
correlations are turned on, the totally uncorrelated result (N - 1)qon(p) must be
corrected by a Pauli kinematic term -(1 - Sqo)O(kF - p)O(kF - lP - qJ). For the
present case of interacting fermions, the dynamical correlations, manifested in virtual
single-particle excitations out of the Fermi sea, lead to tails on the step distributions
(the F,, terms). The dynamical correlations also produce an overall quenching of the
effect, through the strength factor n, (0 < n, :_ 1). The last line of (27) contains
terms of "higher order" which act to correct the various processes just considered.

Upon taking the Bose limit of (27), we recover the corresponding decomposition

of the generalized momentum distribution of a Bose fluid as derived in Ref. 8, namely

n(p, q) = 6qo(N - 1)n(p)

+ (1 - 6q0)(6p0 + 6pq)NnoF(q)

+ (1 - 6q0)(1 - 6po)(1 - 6pq)n'(p, q) (28)

the non-condensate portion being given by

n'(p, q) = F, (q)[n'(p) + n'(1p - qD]
, p i ( r, r' Fl (r, r r' e- P(-r e- q(lr)drldr2dr' .(29)

Only the direct contributions to (27) survive. Thus the third and fourth lines are
to be omitted, and the form factor Fdd(q) is to be identified with the function FI (q)
studied in the earlier paper. The function F1 (rlr 2 r') entering (29) is specifically

F(rir 2r') = Fr 1(r)F1 (r') + [1 + F, (r)][1 + F(r')]{expf-P(rr 2r')] - 11. (30)

The three addends of (28) have the following interpretations as contributions from
distinct scattering processes taking place in the many-body medium (see Fig. 3):
The trivial first term corresponds to the null scattering process 3(a). The third term



accounts for 3(b), in which a boson is scattered from orbital p outside the condensate
to another non-condensate orbital p - q by transferring momentum hq to a density
fluctuation. The other two processes shown, 3(c) and 3(d), are described by the
second line of (28) and involve the zero-momentum condensate. They correspond,
respectively, to creation of a particle of momentum -hq by the condensate and to
absorption of a particle of momentum lip into it, a phonon being created in each case
to conserve momentum.

qvO

)p PA
No 0p-qAO

(a) (b)

q O II-I)q:

(c) (d)

Fig 3 Scattering processes contributing to the generalized momentum distribution function n(p, q)
of a Bose fluid with a macroscopic zero-momentum c ndensate (cf. Eq. (28) and following text).

Finally, we should address the issue of the practical validity of the sequential
relation (25) or (26). In the Bose limit, we may split this relation into two conditions,
one applying at p = 0 (the condensate condition) and the other applying at finite p
(and involving terms smaller by a factor 1/N). These conditions read 1+2F (q = 0) =

0 and n(2)'(p, 0) +n(3)'(p, 0) - 0, respectively. As discussed in Ref. 8, they constrain
the choice of correlation factor in the Bose case. In particular, it may be shown that
the condensate condition is satisfied for optimal Jastrow correlations, even at the
HNC/0 level of approximation (i.e., neglecting elementary contributions), but fails
for a generic f(r). In the Fermi case, the situation is rather different: the sequential
relation (26) is fulfilled identically for any Jastrow trial function, and indeed, even
if this choice is extended to include multi-body correlations of Feenberg type. The
universal satisfaction of (26) is a consequence of the presence of Pauli exchange
correlations, implied by the Slater determinant 4. Technically, this property may be
attributed to a Fermi cancellation phenomenon of the type encountered in the FHNC
analysis of the static structure function S(q) (cf. Ref. 7). While formally exact, the
required cancellation, and hence the sequential relation, is violated to some degree
in any finite-order approximation within the HNC/n sequence.

NUMERICAL RESULTS FOR SINGLE-MOMENTUM FORM FACTORS

In correcting the impulse approximation to deep-inelastic scattering from the
helium liquids for final-state interactions, Silver I has used the simple approximation

p 2(rir2r') " pp(rir')g(jrl - r 21) (31)

for the required two-body density-matrix elements. This approximation may be
tested microscopically within variational theory, by hypernetted-chain evaluation of
the functions p 2(rir 2 r'), pi(rir'), and g(r).



In the framework of the Jastrow variational theory developed here for Fermi
systems of arbitrary level degeneracy, Silver's approximation (31) corresponds to
certain rough first estimates of various quantities appearing in the contributions (17)

and (18) to (14), en route to the construction of n(p,q) via (27). In more detail, it

is equivalent to the replacements

pl(rr') plID(rr')(rr') , (32)

Fdd(r) + Fde(r') = 9() - 1 , Fdd(r') = 0 , Fd,(r') = 0 (33)

v-'(r) - Fc¢(r) = 0 , (34)

and to neglect of the "pure-three-point" contribution p23 (r:r2 r') of Eq. (18). In

momentum space, relation (32), the first member of (33), and relation (34) become,

respectively, 10() = 71DI(p) ,(35)

Fdd(q) + Fde(q) = S(q) - 1 , (36)

V-10(kF - P) -*%,(IP) -- 0 ,(37)

where S(q) is the static structure function corresponding to the radial distribution

function g(r). As may be seen by taking the Bose limit, the corresponding replace-

ments implied in the Bose case are

Fi(r)-=g(r) -1 , 5(r')_=0 ,(331)

F1(q) = S(q) - 1 , (36')

and neglect of the three-point function F(r, r 2 r').
The most striking feature of Silver's approximation is, of course, its violation of

time-reversal invariance, evident in the asymmetric treatment of at least one of the

pairs Fdd(r), Fdd(r') and Fd(r), Fde(r') by (33), and of the pair Fi(r), Fl(r') by

(33').
To make a quantitative judgment of the efficacy of approximations (32)-(37),

(33'), and (36'), we have calculated the distribution functions and form factors en-

tering these relations, for liquid 4 He and liquid 3He at their respective equilibrium

densities (p = 0.0218 A- 3 and p = 0.01658 A- 3). For the Bose liquid we have used

a Jastrow correlation factor f(r) optimized by a paired-phonon analysis 9 ; a Schiff-
Verlet form1" f(r) = exp[-(b/r)5/2] was chosen in the Fermi case, with b = 2.9547 A

(cf. Ref. 11). The numerical evaluations were carried out in the Bose or Fermi

hypernetted-chain approximation (HNC/0 or FHNC/0) in which the elementary-

diagram contributions to the various quantities are set zero. This approximation
should be adequate for the immediate task of testing the ansatz (31).

Our results are summarized in Figs. 4-6.
Figure 4 compares the form factor F, (q) (solid curve) with the overshoot S(q)- 1

of the static structure function (dashed curve), testing (36') [or the ,first member of

(33')] in liquid 4He. The two functions have roughly similar shapes, but depart
substantially at small q. At q = 0, the numerical result for F (q) goes to the correct

asymptotic result -1/2 (as it should, since the 'condensate' condition derived from
the sequential relation must be met in HNC/0 when f(r) is optimized). On the other

hand, the estimate (36') deviates from the correct limit by a wide margin, since S(0)

must vanish for the optimized f(r).



Figures 5 and 6 address the situation in liquid 'Ile. The shortcomings of the

estimate (36) [or, equivalently, the first member of (33)] are revealed in Fig. 5, which
shows S(q) - 1 and the sum of form factors Fdd(q) + Fd,(q). Within the FHNC/0
approximation, the departure from assumption (36) is clearly exposed and again is
particularly apparent at small momenta. The exclusion principle alters the q = 0
limits seen in the Bose case (Fig. 4), by virtue of the Fermi cancellation effect men-
tioned in the preceding section. For a Fermi system described by a Siater-Jastrow

0.2-
.0.0 I /  '  ,. 3 .0  4.0

I q (X -

-0.2

-0.2 7 -q+~q

-0.4

-0.8-

2I.03.0

Fig. 4. Test of (36'). Form factor Fs(q) for creation of a particle out of the condensate, in HNC/0 (solid
curve) and Silver's (dashed curve) approximations, for liquid 'Ile at equilibrium density, described
by an optimized Jastrow wave function. Static structure function of (36') was evaluated in ItNC/0
approximation.

0-1
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-0.2 d(')+rd,(q)

-U 1. 2. T

q (A71)

Fig 5. Test of (36) Surn of form factors rd(q) + F7d(q) (solid curve) compared with overshoot of

static structure fuction F(q) (dashed curve), for liquid Ie at equilibrium density, described within

a Jastrow-FIENC/0 approximation.



wave function, thi. cankellation plheonenon guarantees, at q = 0, the propcticb
S Xde(q) = -. q) = -1 and, consequently, S(q) = 0 and Fdd(q) + Fd,(q) = 0. The
latter properties are (approximately) reflected in our numerical results for S(q) and
Fdd(q) + Fda(q). However, one does see, in Fig. 5, slight deviations from the cor-
rect limiting value of zcro, which result from use of the FHNC/0 approximation.
The standard FHNC approximants (/0, /4, etc.) are known to disobey the Fermi
cancellation rules as a result of the neglect or inconsistent treatment of elementary
diagrams.

Fig. 6 shows the momentum distributions n(p) and nDl(p) and tests the replace-
ment (35) [equivalent to (32)]. The strength factor associated with both of distribu-
tions is n0 = 0.2212. The two functions are seen to have very similar behavior, but
their magnitudes differ typically by 10-15%.

0.5 - n(p)

I \\

0.4 - nDA~P) ......

0.3-

0.2 - Fcc(P)

01 - , .-..

n(p)"'.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 I.8 2.0

Fig. 6. Test of (35) and (37). Momentum distribution functions n(p) (solid curve) and nDz(p) (dot-
dashed cur e) of liquid 31{e at equilibrium density, described within a Jastrow-FIINC/0 approxima-
tion. Dashed curve shows circular-exchange function F,,(p).

According to (37), the Pauli exclusion corrections to n(p, q) of the circular type,
involving v-9(kF - p) - Fe(p), are entirely ignored in Silver's treatment - even the
trivial kinematic statistical effect of the first term is absent. The form factor Fcc(p),
evaluated in FHNC/0 approximation, is shown in Fig. 6 as the dashed line. This
function vanishes inside the Fermi sea, jumps to a height of about 0.5 at the Fermi
surface, and decreases slowly in magnitude with further increase of the wave number
p. In general one may therefore expect such statistical effects to be important. On
the uthei hand, we note that their net contribution to n(p, q) of (27) is proportional
to the strength factor no, which is only about 0.2 in liquid 3 He.

In brief, an initial application of the microscopic theory of the density-matrix
elements P2 (ri r 2r' ) has documented significant quantitative deficiencies of the simple
estimate proposed by Silver. Wp should point out, however, that the final-state
corrections evaluated in Silver's theory of deep-inelastic scattering at high momentum
and energy transfers may be insensitive to the errors we have noted, and, in particular,
to the behavior of the sum of form factors Fdd(q) + Fde(q) at small q. This possibility
is currently under investigation.' 2



IFU:RTliLR WORK

We have not reported numerical data on the non-separable terms n(2) '(p, q) and

n(3)(p, q) of (27), nor on the integral term in (29) involving the three-point func-
tion F(rlr 2r'). While these more complicated objects may all be calculated from
quantities generated in the FHNC/0 or HNC/0 treatment, their detailed evaluation
will be deferred until a scaling or interpolation procedure 3,' has been implemented
for the incorporation of elementary-diagram corrections. At the same time, the Jas-
trow ansatz will be supplemented by triplet correlations. Work in these directions is
currently in progress.i 5

It is worth mentioning that some HNC/0 results for the quantity F (rl r 2r') were
presented in Ref. 8., results which demonstrate the failure of the HNC/0 treatment
to fulfill the condition p2(rlr 2r,) = p2g(r12 ) and thereby provide another reminder
of the necessity of including effects of elementary diagrams.

While our derivation of the decomposition (27) for the Fermi generalized momen-
tum distribution was predicated on the Slater-Jastrow choice for the wave function
I', the corresponding decomposition (28) for the Bose system (derived here as a lim-
iting case of the Fermi result) was originally obtained for very general I, including
the exact ground-state wave function.8 Indeed, Ref. 8 contains a general asymptotic
analysis of the full Bose two-body density matrix in configuration space, as well as
the restricted version p2(rlr 2r') considered here.

A more detailed presentation of some of the results of this contribution may be
found in a longer article.'" Further studies along the same lines will be concerned
with the full Fermi two-body density matrix.
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S0. . The classic Cooper electron-pair problem is generalized via a Fermi
="U' 4 >% sea having two concentric surfaces, rather than the familiar sphere of a

10 U) a) H- .0S. • N perfect (interactionless) fermion gas. Substantially tighter-bound pairs
. 0 0o a are obtained for fixed phonon coupling with the BCS model interaction, no

W matter how weak. This will admit increased transition temperatures for
M M superconductivity in the BCS theory and beyond, and suggests that designing

0 a 0 materials having multiply-connected Fermi surfaces with maximal interior
o1 J .Iarea will yield larger T values.

INTRODUCTION
The Cooper electron pair problem is vitally central to the

Bardeen-Cooper-Schrieffer (BCS) microscopic theory of superconductivity 2.

It consists in a Schr6dinger equation for two particles of opposite momenta
and spins being scattered by a particular attractive interaction only into
one-electron plane wave (PW) states just above the spherical Fermi sea
occupied by the PW orbitals of the other N - 2 background electrons in the
N-electron system. PW states are used for simplicity, instead of Bloch
states. The well-known resulting eigenvalue equation for the pair energy
E is then

0

E +h(.
F D

SVVd g( ) (1)
Z 2E(k) - E +

F

*A travel grant from US Army Research Office .s gratefully acknowledged.
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where E(k) = h2 k 2/2m are the unperturbed single-particle energies and V > 0

is the strength of the effective attractive electron-electron interaction

induced by the electron-phonon coupling. This is nonzero only within a

very thin shell of thickness ho D above the Fermi surface of energy E =D F

h2k2/2m, k being the Fermi sphere radius; it is the so-called "BCS model
F F

interaction". Here, htw is the maximum energy possible for an ionicD

lattice phonon, and is typically 10-3 to i0-2 times smaller than E . The

prime over the summation sign means restriction to those PW states such

that E < E(k) < EF + hw D , i.e., to states that are unoccupied. The

integral involves the free-electron density of states g(e) / , which

can in turn be factored out from the integral as a constant g(O ) due to

the smallness of hw D /E . This leaves an elementary integral to beD F

performed that gives a logarithm. Solving for the eigenvalue E then yields
0

2hw 2g(VE 2 2E - a 2E - 2ie-/(r (2)
o F e 2/g(E F)V D 0 2 F - "

Putting E = E /2E and v hc /2E , the first equation can be rearranged
o o F D F

to read

e -1i
e-2/g(E )V o (3)

e - 1 - 2v
0

The lhs (a constant for fixed coupling and density of states) and rhs of

this equation are displayed, for the special but typical case 2v = 10-3, in

Figure 1 as function of e = I - A /2EF, where A is the pair binding

energy. We see that e differs very little from unity (and hence A /2Eo o F

from zero) for all but the largest values of the coupling parameter A =

g(E )V/2. Since (3) results from solving a two-body Schr6dinger equation

(in momentum representation), its validity is not limited to weak coupling,

unless regarded as a Bethe-Goldstone equation (ladder approximation)

treatment of the many-fermion problem, which is exact only for small k FX.

2
Also restricted to weak coupling is the BCS many-electron theory . In

this formalism a temperature-dependent energy gap A(T) emerges, which for T

= 0 is found to be

2



* 2V="h(D/EF= 16in3
1 -  rhs-

"< 5 I1

!2

0.5.
1~1

0
Ihs3 X=0.51.0

0.7 0.8 0.9 11 1.1

Fig. 1. Graphical solution of Eq. (3) for 2P = 10-3 and several

values of the coupling parameter A as indicated.

A(O) ABcs hD W 2hw e / (4)
0 sinh[l/A] A--O D

i.e., identical to the weak-coupling limit of the Cooper pair binding

energy A in (2). The "normal metal" to "superconductor" transition
0

temperature T is then determined by the vanishing of A(T), or A(T ) 0,
c 

C

whose solution is the celebrated relation

Bcs _ (5
A = ie-kT 1.76kT (5)
o c

where 3 0.577 is the Euler constant. Combining (4) and (5) we have

T 1.13 e-i/ (6)

3



where 6) hwD /k 1s the Debye temperature. For elemental superconductors

measured T values range from a very low 3.25 X 10-4 K for Rh to 9.26 K forC

Nb. Since ED is proportional to an appropriately averaged sound speed c

for the lattice, and since c , with M the mass of' the latticeion ion
M-1/2

ions, we see that T cc M . This is known as the isotope effect,c ion

observed for many elemental superconductors but not for the new

copper-oxide high-T materials. Since 6 D -02 K, (6) severely limits T
c D c

to a few degrees K with acceptable values of A. Other T formulasc

beginning with the MacMillan4  formula based on strong-coupling

Migdal-Eliashberg theory , give values of T as high as around 40 K.
c

Indeed, a recent realistic tight-binding calculation with the Eliashberg

equations gave Weber6 T values between 30 to 40 K for the copper-oxide
C

superconductors La 2x(Ba,Sr)x CuO 4, which have empirical T values in the

range 30 to 36 K. But for YBa Cu 0 with observed T = 95 K Weber and2 37 c

Mattheiss, using similar techniques, were not able to extract a T larger
c

than about 30 K. Furthermore, the observed value of the exponent c in the

formula T o M0 is about 0.18 for the lanthanum-based copper oxide just
C ion

cited, and 0 for the yttrium-based copper oxide.

We show how the restriction to low T 's, exemplified by (6) and
-i/A c

traceable to the e factor in the Cooper pair problem (2), can be

surmounted through a generalized Fermi sea. And, moreover, a negligibly

weak isotope effect is then possible, even with a phonon-mediated

interaction.

The fact that (quasi) electron-pair binding occurs for arbitrarily

weak attraction---as well as the non-perturbative (essential singularity in

V) property of the energy A needed to break up a Cooper pair---occurs even0

for one-body potential well problems8 in two-dimensions (2D). Recalling

that g(e) = const in 2D, it is then clear why the Cooper pair problem

behaves like a 2D quantum system, a fact which may be pivotal in

understanding the superconductivity of the layered copper-oxide ceramics.

ABNORMAL OCCUPATION

The all-important Fermi sea assumed in the Cooper problem is

appropriate to the perfect Fermi gas Slater determinant ground state wave

4



function for N particles enclosed in a volume 0,

i M )-1/2 det n '[0-/ e •k r J1]7

k Li

with i,j = 1,2,.. .N, and no = O(k - k) the unit step function, O(x) Z 1[1+
kc F 2

sgn(x)]. For an interacting system the most general occupation scheme

consistent with the Pauli principle, however, is merely

nk= 0or 1, nk= N. (8)

k

We have raised the general question of what the optimum scheme might be

for a non-ideal, fully-interacting many-fermion assembly in any dimension.

After all, Fermi surfaces for many materials are known which contrast
10

drastically with the familiar Fermi sphere. Overhauser , for example, has

considered multiply-connected Fermi seas associated with both charge and

spin density wave states. These states break the translation symmetry and

will not concern us here. Indeed, as early as 1950 Fr6hlich 11 had already

contemplated a departure from the simple Fermi sphere, with ordinary PW

orbitals. He took a spherical shell concentric upon, but disjointed from,

an interior sphere, of occupied electronic states, and used this with his

new electron-phonon hamiltonian in (second-order) perturbation theory to

find a lower energy state, if the coupling exceeded a certain critical

value. This behavior, however, sharply differs from the empirical fact

that superconducting critical temperatures can be arbitrarily small, a

drawback eventually circumvented by the (infinite-order) treatment of

Cooper with the standard Fermi sea. More recently, in an infinite

meson-nucleon system a transition from a Fermi sphere to a Fermi "shell"

(cf. below, Eq. (10)] distribution has been interpreted as a possible phase

transition from "nuclear" to "quark" matter within a relativistic

Hartree-Fock (i) treatment12. The (first-order) transition is signalled

by a large jump at high densities in the resulting low-temperature specific

heat. Finally, abnormal occupation in a finite nucleus has been discovered
in 24Mg in constrained H 13 (with good total angular momentum

and its projection), using a realistic effective two-nucleon interaction

based on the Reid soft-core potential.

Within the (nonrelativistic) plane-wave Hartree-Fock (PWHF)

5



approximation with many-fermion hamiltonian H we originally showed9 that

for a simple one-dimensional system under a sufficiently attractive (but

non-collapsing in the thermodynamic limit), short-ranged, two-body

interaction v12, lower HF total energies

HF [ k 1(9)

-E E(k)n + 1 E k k IV Ik k > - <k k IV 1k k >} n n
k 2 1 2 12 1 2 1 2 12 2k1 } k k2Ic kk 1 2

12

emerge for some particle densities N/Q = kF/3r 2 , with a generalized Fermi

sea defined by

nk =(k - gkF )e(zkF - k)

3 3 1 1 > 9 ? 0 7 a 1.

This corresponds to a spheri%,al shell in k-space of inner and outer radii

SkF and Tk F, respectively. In other words, it was established that

PWHF [n ] < [no] for a range of densities, and in a manner
PVF PWHF kc

reminiscent of a (first-order) gas-liquid phase transition. Any lowering

of the total HF energy at fixed density comes entirely from the last

(exchange) term in (9), since the first (kinetic energy) term can only

increase for any n other than a spherical Fermi sea, while the secondk

(direct) term is unchanged if the interaction is local, as then that matrix

element is independent of the summation indices for PW states. The search

for lower-energy, abnormally occupied Slater PW determinants for a wide

variety of pair-interaction cases was subsequently extended14 to three

dimensions (3D), and to a much larger class of abnormal occupation schemes

nk' Moreover, starting from a very-many-shell structure modeling the

general distribution (8), random-search and random-walk numerical

techniques 14 established the "single-shell" distribution (10) as the

optimum one in numerous cases. In still further workis it was proved, for

example, that any hard-core plus square-well two-body potential prefers

abnormal occupation, no matter how weak the attraction. This potenLial has

been employed 16 to model liquid- He semi-realistically. Finally, several

mary-boson systems were also found 17 which prefer abnormal uccupation.

Summarizing, even at the PWHF level of approximation, Fermi seas more

general than the usual spherical sea are favored for sufficiently strong

6



interparticle coupling. A possible physical rationale is for this is the

appearance, as coupling is increased, of "particle clusterings" of some

kind, since abnormal occupation precludes small-k states, meaning

suppression of particle orbits with larg. )atial extensions.

TIGHTER-BOUND COOPER PAIRS

Robustly tighter bound Cooper pairs are possible, for any coupling

strength, with abnormal occupation. We suggest that when suitably

incorporated into the BCS-Bogoliubov 19-Anderson 2-Gor'kov 21-Migdal

-Eliashberg formalisms, this may yet provide a comprehensive understanding

of both low- and high-T superconductivity, perhaps in terms of the phonon
C

mechanism alone. The term "normal" is here used in the sense of Landau's

Fermi liquid theory, since a key assumption for a first-principles

derivation by Klein22 of Landau's theory is that the lowest-energy

single-particle states be occupied, i.e., that the familiar

finite-temperature Fermi distribution holds for the single-particle

spectra, instead of some other, more general, distribution.

Guided by our PWHF studies' 1 4' 1 7 we employ the model (10) merely as

an illustration. This particular occupation scheme is a definite step

beyond the perfect Fermi gas picture, and suffices to uncover an

instability in the Fermi-sphere-induced Cooper pair. The two surfaces in

(10) are situated at energies E = g2E = (73 _ 1)23E a 0 and E = 2 E1 F F 2 F

E . The parameter X is presumably characteristic of the fully-interactingF

many-body system, and can later be fixed, within a BCS-like theory, e.g.,

variationally, with respect to the total superconducting ground-state

energy. The integral in (1) now becomes

E +hw
2 2)g(E1 dg Ed (

ig = V - gE 2- ' (11)

E-hw E
1 D 2

provided that E is significantly larger than hw (as was verified post

hoc). Scattering is now allowed by the BCS model interaction in the

vicinity of both surfaces. Performing the integrals makes solving for

e -2/g(EF easier than for the new eigenvalue E. Putting E/2E Fa e andF

hw /2E a = v, Eq. (11) leads to a transcendental equation for e which, in
D F

7



the 3D application presented here, is

3 1/3

e-1/A£ = -2/g (E FI)V -- (,X3_1)1 3  + 2l - (12)
1)2,1)

e~3 e - - 2v... .

Both quantities in the square brackets must be non-negative to ensure that

the lhs of (12) be real.

We have carried out a numerical search for values of c and d

satisfying (12), such that X' > 1 and e > e = I - A/ 2 EF, with A positive,

for a wide range of (A, v) values. However, a better feeling for the

solutions of our model is obtained from Fig. 2, where both sides of Eq. (12)

1 /I

-< rhs

Case:2V=IhwD/EF=10
- 3

Y=1.2

0.5

NEW Ihs OLD

I =o. 5

01
0.7 15
(Y_) -2v (Y7-) E-E/2EF 7 T+2v

Fig. 2. Typical case illustrating graphical solution of Eq. (12).

are plotted for the case specified by A = 0.5, 2v 10-3 , and T- = 1.2. The

lhs then equals = 0. 135. The rhs of (12) gives rise to the full thick

s



curves shown; the dashed curves correspond to negative quantities inside

both square brackets of (12) and so are not relevant. The two zeros

(poles) are designated by dots (crosses) on the e-axis. They are labeled

by their -al values, for any v ? 1 and 2p, which for the specific case
just cited are respectively equal to 0.808259, 0.809259, 1.440 and 1.441.

The dot-to-cross distances have been exaggerated somewhat in the figure,

for clarity. The lowest energy eigenvalue occurs from the projection of

the intersection marked "NEW" and indicated by an open circle: it is a

(quasi) bound state since e < 1 and moreover, by inspection, e < e (= 1 -

10-3 = 0.999). The intersection marked "OLD" and indicated by an open

triangle is now an unbcund level in the pair continuum, and becomes the

ordinary Cooper bound state (2) or (3) as x 4 1, when the open circle

intersection is pushed leftwards outside the E > 0 region. The reason for

tighter-bound Cooper pairs with abnormal occupation is almost trivial: an

interior Fermi surface allows for lower kinetic energy electron pairs with

roughly the same potential energy As in the usual Cooper pair case, the

new, tighter-bound Cooper pair solution will survive, no matter how weak

the coupling V, since smaller coupling merely lowers the horizontal line

marked "lhs". More interesting, however, is that these tighter-bound

Cooper pairs can lead to transition temperatures T with a robust
C

contribution of order T ( 4 0 to 10s K), in addition to a much weakerF

"isotope-effect" contribution of order 6 ( D 102 K), as we now discuss.

HIGH-TEMPERATURE SUPERCONDUCTIVITY

In the weak-coupling limit (X = g(E )V/2 << 1) the intersection marked

"new" in Fig. 2 will correspond to

1 - A/2E e e = ( 3 - 1 )2/3 - 2v - 7, (13)F

with 0 < q << 1. Inserting the last member of this into (12) and expanding

about ) = 0 gives n 2ve . Recalling (5), (13) leads to

T 1.13 (1 -g2)TF + 1.13 (1 -e -'/ ) e + (14)

where W - 1)1/3 is the radius (in units of k .) of the inner Fermi

surface of the abnormal distribution (10). We found that typically 9

ranged from about 0.7 to about 0.9, so that 1 - 12 ranges from 0.2 to 0.5.

9



V

Thus T values well in excess of room temperatures (-300 K) are possible
C

without invoking stronger electroit-phonon coupling, nor unconventional

interaction mechanisms. The latter, however, are not ruled out in

principle. We also note that in (14) only 8 depends on i-1/2 so that the
D ton

isotope effect, if present, will be 102 to 103 times weaker, since G3 /T FD F
-3 -210 to 10

CONCLUSIONS

Tighter-bound Cooper pairs will arise by generalizing the assumed

Fermi sea for the occupied background electrons, without invoking either

stronger electron-phonon coupling in the BCS interaction nor unconventional

interaction mechanisms. The calculations performed in 3D can

straightforwardly be done in any dimensionality as only the form of g(e)

(which is absorbed into A anyway), and the - 7 relation (10), will

change.

Multiple-surfaced Fermi topologies can lead to T 's tied not to theC

Debye temperature G3 ( _ 102 K) as in normal-occupation BCS theory, butD

rather to the Fermi temperature T ( 10' to 10' K). They also lead to

the absence (or extreme weakness) of an isotope effect, but, as before,

this neither proves nor disproves the presence of an electron-phonon

interaction mechanism.

If more were known about multiply-connected Fermi surfaces and how to

manipulate them, perhaps one could design materials (most probably

compounds) having interior Fermi surfaces which, allowing for Cooper pairs

with smaller kinetic energies, would result in higher T values.
C
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Abstract: The nuclear shell model exists now for forty years. The notion of
independent particle motion which is at the basis of this simple picture of nuclei has
recently been challenged by new experimental data. Nevertheless, a considerable
amount of experimental data has successfully been interpreted over the years in terms of
this picture. On a microscopic level, the success of the shell model has been linked to
the strong short-range repulsion in the nuclear interaction by introducing the concept of
the healing of the relative wave function of two nucleons. Recent calculations of the
effective interaction in nuclear matter are discussed which demonstrate that this concept
of healing is not valid but instead particles scatter at all energies in the medium. It will
be argued that the success of the shell model picture should instead be linked to the
validity of the quasi-particle picture as used by Landau for liquid 3He. Calculations of
the spectral function for 160 are discussed which demonstrate the essential difference
between a finite nucleus and nuclear matter. The finiteness of a nucleus ensures that a
relevant single-particle basis has shell structure, implying that there is an energy window
in nuclei related to the difference between particle and hole energies in which this
quasi-particle picture can be applied.

1. INTRODUCTION

The simplest version of the shell model considers nucleons bound in some
attractive well moving indcpendently from each other. This well can be thought of as
being generated by the average interaction a nucleon experiences with the other

'This research was supported by the Condensed Matter Theory Program of the Division of Materials
Research of the U.S. National Science Foundation under Grant No. DilR-8519077 (at Washington

University) which also provided computer time for the calculations which were pardy p rformed at thc
Pit..urgh upercomputer enter. cl~ grrdm t U S. Army Re.,achbf& J g.iil -
rn~o'J Additional support wii priby iNATb under Grant 'No. ,RG& 5/'"4 ind' in part
by CAYCIT Grant No. PB85-0072-C02-00 (Spain).



nucleons in the system. Since this average interaction is obviously attractive, nucleons
can be assigned single-particle (sp) quantum numbers of a spherical well. When an
average spin-orbit interaction is included, this nuclear shell model can account for all
observed magic numbers as well as a number of other experimental data. This is
essentially the picture as it has been published 40 years ago. 1'2 It has been very difficult
to link this mean field picture of the nucleus and the strong repulsion present in the
nucleon-nucleon (NN) interaction on a microscopic level. Historically, Brueckner 3

suggested to convert the bare interaction into a renormalized interaction (G matrix)
which includes any number of interactions (ladder diagrams) between the particles in the
medium, similar to the corresponding T matrix in free space. This G matrix is obtained
by solving the Bethe-Goldstone equation.4 This interaction has played an important role
in the efforts to reconcile the strong interaction at short distance with the tranquil picture
of nucleons moving in simple sp orbits. In ref. 5 the concept of healing of the relative
wave function is introduced as an explanation for the validity of the shell model. This
healing property results from the fact that the conventional solution of the Bethe-
Goldstone equation does not allow scattering for energies below 2 EF as a consequence
of the Pauli principle and is therefore purely real.

One of the purposes of this contribution is to show that this analysis must be
improved and extended. This new analysis 6will rely on explicit calculations which have
been performed recently for nuclear matter.6 In this work the short-range correlations of
the Reid soft core interaction were carefully treated and the resulting sp properties were
studied in detail. This study is also relevant for finite nuclei since short-range
correlations should be similar in finite and infinite systems for the same bare interaction.
It will be shown that the concept of healing as discussed in the literature has no strict
validity since the particles in the medium do scatter at all energies. In sec. 2 of this
contribution the results of these calculations which employ the Green's function method
will be reviewed and its implications for the nuclear shell model indicated. Special
attention will be paid to the nucleon spectral function and the relevance of the quasi-
particle concept. In sec. 3 the modifications of these results due to the finiteness of the
system will be discussed. Results for calculations of the spectral function for 160 will
illustrate the usefulness of the quasi-particle idea for finite nuclei and its relation to the
success of the simple shell model.

2. SHORT-RANGE CORRELATIONS AND SINGLE-PARTICLE PROPERTIES

In ref. 6 the original idea of Brueckner how to treat the influence of short-range
correlations, is embedded in a Self-Consistent Green's Function (SCGF) approach. The
ladder equation is solved with inclusion of both particle-particle (pp) as well as hole-
hole (hh) propagation. The connection between this interaction and the resulting sp
properties is made by calculating the resulting self-energy. This self-energy can then be
used to calculate the sp propagator or the particle and hole spectral functions in nuclear
matter. In principle, this requires a self-consistent solution in which the full dressing of
the sp propagator is included in the determination of the ladder correlations. At present
this self-consistency has been established in ref. 6 for the quasi-particle energy which
corresponds to the inclusion of only the real on-shell part of the self-energy in the self-
consistency procedure.

:(k) = 2+ Re X(k,e(k)) (1)
2m

When this average self-consistency is achieved the complete energy and momentum
dependence of the self-energy can be studied. This requires knowledge of the imaginary



" part of the self-energy above but also below the Fermi energy. It is this last
contribution which has never been considered in the conventional treatment using the
Bethe-Goldstone equation which only considers pp propagation in the ladder equation.
Including hh propagation one naturally treats the coupling of sp degrees of freedom to
2hlp and more complicated states and therefore one obtains an imaginary contribution
to the self-energy below EF- A Green's function procedure automatically treats hh
propagation on the same footing as pp propagation. Recently, this hh propagation (to all
orders) has also been shown 7 to be the crucial link in connecting the coupled ladder
self-energy problem with the description of pairing, going even beyond the conventional
BCS description. 8

Including hh propagation in the ladder equation implies that the resulting
interaction is complex not only for energies above 24 but also below. This conflicts
with the notion of healing which has been related to the G matrix being purely real for
energies below 2 EF in the case of the Bethe-Goldstone equation.5 Obviously, collisions
do take place in the correlated system at any energy. This statement must be regarded
as general for a normal Fermi liquid. The validity of shell model concepts in finite
nuclei can therefore not be linked to this healing property of the relative wave function.

Calculations have been performed for the central part of the 3S, - 3D, channel of
the Reid soft core potential. 9 This avoids the strong pairing instability l° in the. deuteron
channel and allows a careful study of the influence of short-range correlations on the sp
self-energy. 6 The self-energy of a nucleon contains all the information necessary to
obtain occupation probabilities, quasi-particle strength and broadening features which
alternatively can be visualized in terms of hole and particle spectral functions. Results
for the hole spectral function are given in Fig. I for k = 0.828, 1.258, 2.220, and
4.376 fm- 1 at a density corresponding to kF = .1.4 fm- . Results for the particle spectral
function are given in Fig. 2 for the same momenta. Clearly one observes the increasing
validity of the quasi-particle concept when k approaches kF since the peak of the
spectral function becomes sharper the closer the momentum is to kF. This holds for
momenta below kF (Fig. 1) as well as for momenta above kF (Fig. 2). One observes
therefore in this actual calculation which uses a strongly repulsive NN interaction at
short distances, that the notion of quasi-particles is valid in exactly the same sense as it
has been used by Landau in his description of Fermi liquids.11 In an infinite system this
concept is strictly valid only for the Fermi momentum. For other momenta one
observe- therefore that the further the momentum value is removed from kF the more
the quasi-particle peak is broadened.

For momenta close to kF most of the hole strength is under the quasi-particle peak
when k is smaller than kF. For k = 1.258 fm- 1 83% of the hole strength is under the
peak whereas 3% is found at lower energies. The occupation of this momentum in the
correlated ground state is obtained by integrating the hole spectral function up to EF- and
therefore corresponds to 86%. The remaining strength is moved beyond the Fermi
energy and belongs to the particle spectral function shown in Fig. 2. The remaining
14% of the strength is smeared out over a very large energy domain which is intimately
connected with the character of the interaction which couples sp degrees of freedom to
very high-lying 2plh etc. states. This removal of sp strength to high energy is observed
for all momenta by the same amount (see Fig. 2) emphasizing the short-range nature of
the effect. The jump in the momentum distribution at kF is equal to the strength of the
quasi-particle pole at kr and a value of 0.83 is obtained here. The inclusion of tensor
correlations is expected to decrease this value further by a few percent. 12
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These and other results are more fully discussed in ief. 6 together with thecalculational details. One can conclude from these results that even though there is

strong scattering in the medium, the concept of a quasi-particle picture is still extremely
useful in exactly the same way as it has been used in Landau's Fermi liquid theory'1 for
3He. For a normal Fermi liquid this validity of the quasi-particle concept is almost
exclusively a phase space effect related to the presence of 2plh and 2hlp states around
the Fermi surface which can mix with sp states. The strength of the quasi-particle pole
is then a good measure of the correlations, the closer to 1 the more the system can be
described in terms of a mean field picture.

The role of short-range correlations should be similar in finite nuclei and infinite
nuclear matter at the corresponding density. These results have therefore direct bearing
on the situation in finite nuclei and depletion effects due to short-range correlations are
inevitable.1 3 From the present results one can a!so infer that the missing sp strength is
not just "around the comer"; it is removed to very high energies as a consequence of
the short-range correlations. This effect of the short-range correlations and its
consequences have not been properly considered in Brueckner type calculations.

3. FINITE NUCLEI AND IMPLICATIONS FOR THE SHELL MODEL

Presently, the breakdown of the mean field picture is an experimental reality.
Combined analysis of (e,e'p) reactions 14 together with absolute charge density
distribution measurements 15 indicates that the occupation of the 3sir proton shell in
2°SPb is 80 ± 10%. This should be compared to the theoretical results of refs. 13,16 and
17. Direct analysis of (e,e'p) cross sections with shell model momentum distributions
suggests that the discrete low energy transitions carry about 50% of the hole
strength. 18,19 This would imply that 30% of the hole strength is at even higher energies
in the A-1 nucleus and cannot be detected. The analysis of ref. 16 for the neutron states
in 20 8Pb indicates that about 73% of the hole strength is found at low energy for such
states with occupation numbers corresponding to 0.85. Assuming similar results for
protons this indicates a 20% discrepancy between this theoretical r~sult and the
experimental analysis

To address this question it is profitable to investigate the influence of low-lying
excitations on the redistribution of sp strength directly in finite nuclei. One should keep
in mind that the nuclear matter results discussed above indicate that somewhat more
than 10% of the sp strength is at high energy. This result is due to a basic asymmetry
between the influence of pp and hh contributions and should be taken into account in
analyses like the one in ref. 16. The spectral functions in finite nuclei can be obtained
directly by solving the Dyson equation in a suitable basis for the relevant nucleus.
Results are reported here for 160. First a Hartree-Fock (HF) basis is generated by
solving the HF equations using the G matrix interaction GNM which is a good local and
static approximation of a 160 G matrix.20 As in any HF calculation a mean field is
generated in which one can define fully occupied and completely empty sp states for
this nucleus. The G matrix that is used here does not include any shell structure
information since it is calculated originally for nuclear matter with a standard gap in the
sp spectrum.

2 1

To calculate the influence of low energy excitations on the distribution of sp
strength the second order self-energy contribution calculated with this interaction is used
to solve the Dyson equation.
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The sp quantum numbers ca,3, etc. refer to the HF basis. The sums in Eq. (2) are
restricted to HF states within 50 MeV of the Fermi energy of the HF calculation. This
ensures that indeed the influenc( of low-lying 2plh and 2hlp states on the redistribution
of sp strength in a finite system is studied. Contributions from higher shells will
eventually also lead to some form of double counting since these states have already
been considered in the construction of the residual interaction. The presence of an
explicit energy dependence in this second order self-energy contribution is responsible
for the fragmentation of sp strength both above the Fermi energy by coupling to 2plh
states as well as below the Fermi energy by coupling to 2hlp states. This can be
clearly seen by inspection of the explicit second order self-energy contribution

y(2)(,y .;-1) <W~.IG 1 Iev><cvIG H 115p
qiv

x -F)O(v-F)O(F-t) + O(F-I)O(F-v)(t-F)(
O+ iT1  0 - (E+e%-&_)(3)

The solution to Eq. (2) has the form

AA A) +

- (EnA- E) + i m co - (EA - E&- ) - i (4)

The poles in this equation give the energies of the states in the A ± 1 systems which
can couple to the ground state of the A-body system through the creation and
annihilation operators a and al, respectively. The residues at the poles for the diagonal
sp propagator correspond to the spectroscopic factors for the corresponding transition
from the ground state in the A-body system to the state n(m) in the A+1(A-1)-body
system. The energies and residues in Eq. (4) are obtained by solving an energy
dependent eigenvalue problem which can be derived from Eq. (2).22

In Fig. 3 results for the sp strength distribution are shown for the relevant sii2

states in 160. The results are smeared by distributing the strength of each peak by
0.5 MeV. In the HF picture, the lowest s1/2 state has full occupation, i.e., a
spectroscopic factor of 1.0 to one state in the A-1 nucleus. This result is also typical
for Brueckner-Hartree-Fock calculations in which the energy dependence of the G
matrix is treated explicitly. When no hh contributions in the ladder equation are
included the resulting self-energy is real below the Fermi energy and therefore leads to
HF like hole states. The next s1/2 state is completely empty and has a spectroscopic
factor of 1.0 to one state in the A+l system. Including dynamic correlations in this
second order self-ecrigy calculation still leads to a concentration of the 2s1t' strength in
one peak as shown in Fig. 3. In contrast the lsI/2 strength (represented by all the other
peaks in the figure) is completely fragmented with most of its strength below the Fermi
energy leading in this case to an occupation of 96%. The remaining 4% is located at
higher energy shown by the smaller peaks to the right of the 2s12 peak.
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Fig. 3. Distribution of slf2 strength in 160 as a function of energy. The 2slr2 strength
is located mainly in one peak reduced here by a factor of 1/100. The rest of
the 2s1/2 strength is not shown. All other peaks correspond to strongly fragmented
Is112 strength. Note that a small portion of lslr2 strength is also found above
the Fermi energy.

This calculation therefore has the same typical features that one encounters in
nuclear matter. For sp states which are close to the Fermi energy the dynamic coupling
in the self-energy results in one strong peak which carries less than but of the order of
100% of the strength. In a finite nucleus like 160 this is particularly obvious since there
are no 2plh or 2hlp states in the immediate vicinity of the 2s1/2 energy and the strength
remains mainly concentrated in one state since more complicated states are too far away
in energy. This feature emphasizes the important role of the finiteness of the system. It
leads automatically to a finite ph energy gap which results in a larger window of
validity of the quasi-particle approximation in finite nuclei. For the lsl/2 state one
observes a strong fragmentation since its energy (in HF) is located in an energy interval
where (in this case) many 2hlp are located and it becomes relatively easy to mix with
such more complicated states. The same result is observed in infinite systems for
momenta far from the Fermi momentum. Experimental results on finite nuclei by means
of the (e,e'p) reaction show a smooth lsI/2 strength distribution for proton knock-out of
160.23 Recent (p,2p) and (p,pn) experiments on 160 show the same feature.24 Clearly
the knock-out of an lslr2 particle is possible for a broad range of energies.

The calculation gives similar results as discussed above for other orbitals. Particles
in shells closer to the Fermi energy like the lp3/2 and the lplr2 are found in large
fractions in the low energy stare-s ,"f the A = 15 system but do not carry 100% of the
strength. On the other side of the Fermi energy most of the ld5/2, 2s/2 (see Fig. 3) and
ld3/2 strength is found in the low energy states of the A = 17 system. Unoccupied
states which in HF are far removed from the Fermi energy show a similar fragmentation
as the lsi/2 state on the other side of the Fermi energy.

These results are in sharp contrast with the mean field picture of nuclei. In an
atom e.g., where the Hartree-Fock approximation works very well, all hole states have a
well defined energy and carry 100% of the strength. The situation in a nucleus



therefoic resembles much more that in liquid 'le and in nuclear matter as discussed in
sec. 2. Nuclear single-particle excitations as observed near the Feni energy must
therefore be reinterpreted as quasi-particle or quasi-hole excitations which carry a

considerable amount of sp strength, Present experimental results put the nucleus
somewhere in between atoms and liquid 3He as far as the strength of correlations are

concerned. States which are far away from the Fermi energy in mean field are located

at energies at which a considerable number of 2plh or 2hip states are found. The

strength of the nuclear interaction is such that considerable mixing between these
degrees of freedom occurs leading to the appearance of sp strength in a broad energy
range.

The experimentally observed smooth distribution of hole strength 18 ,19,23,24 further

emphasizes the non-linear aspects of the problem of calculating the sp propagator. The
present calculation uses HF sp propagators in the calculation of the second order self-
ene gy contribution. However, also these intermediate 2hlp and 2plh states are not
good eigenstates (see Eq. (3)) and are broadened themselves. This effect can be
incorporated by using self-consistent sp propagators in the calculation of the self-energy

in the same non-linear fashion as the HF p:oblem is solved. This self-consistent

formulation is necessary to explain the observed experimental results of smooth hole
strength distributions. This observation, suggests that it is not very realistic to obtain

information on the widths of such strength distributions from nuclear matter

calculations. The role of the ph gap in a finite system in the fragmentation of sp
strength should be explicitly treated.

The results obtained here for 160 do rot yet include the effect of short-range and
tensor correlations on the sp propagator but instead emphasize the role of the finiteness
of the system with its shell structure and surface. These calculations show that up to

5% of strength (using second order self-energy) can be found in tiny fragments below
the Fermi energy as a result of the coupling of sp states to low-lying 2h!p states.
Taking the global effect of short-range correlations (as discussed in sec. 2) into account

and adding another 5% depletion effect due to tensor correlations, 21 7 one expects about

20% of the sp strength to be located above EF for normally occupied states. Still, most
of the remaining strength for these valence hole states should be found in discrete peaks
and not much more than 10% at lower energies (higher excitation energy in the A-1
system) according to the present theoretical results. This is in reasonable agreement
with the results of ref. 16, but disagrees with the present analysis of the (e,e'p)

experiment 18 .1 9 which assigns about 50% of the hole strength to discrete states at low
energy and from a combined analysis together with charge density distributions15 leads
to 80% occupation for the 3sit2 state in 208Pb.

From the results discussed here and in sec. 2 one can conclude that the success of
the conventional shell model is related to the success of the quasi-particle picture for
nuclear systems and the finiteness of the nucleus which extends the window of the
validity of this picture. In a Fermi liquid this picture pertains strictly to the Fermi

momentum and encrgy. Since particle-hole excitations start already at zero excitation
energy, there is immediately this broadening effect when one moves away from the
Ferrm surface. In contrast to this, a finite particle-hole excitation energy exists in nuclei
since these systems are confined in space which leads to discrete single-particle

energies. For this reasen there is a broader validity of the quasi-particle picture in
nuclei and the shell model makes sense when it is not pushed beyond its window of

-validity. Finally, one should also remember the difficulty to explain the experimental

charge density distribution of nuclei25 when a mean field picture is employed. From

partially occupied sia states in a nucleus one obtains an automatic reduction of the

central charge density which can qualitatively explain the experimental data.



The conclusion one can draw from the above discussion is that a marriage oi the
idea of Brueckner to treat short-range correlations and the notion of quasi-particles
employed by Landau both developed already in the fifties, leads to a fascinating picture
of the nucleus as a correlated many-body system and also provides a basis for a
theoretical foundation of the nuclear shell model in the presence of strong interactions.
Present experimental and theoretical evidence suggests that nuclei are considerably more
correlated than atoms and the mean field picture for nuclei is not valid.
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1. INTRODUCTION

In recent years, mixed quantum-classical systems consisting of excess
electrons interacting with classical many-body systems at finite temperatures
have been studied extensively with computer-simulation techniques1 . The
simulation methods for these systems include the path integral Monte Carlo1 or
molecular dynamics 2 and dynamical simulated annealing 3. The latter can only
provide the ground-state static properties of the quantum particles. The path
integral approach has been used successfully to calculate the equilibrium
properties, but the study of time correlation functions4 is not reliable at long
times. However, the recently developed quantum molecular dynamics method,
which deals directly with the time-dependent Schr6dinger equation, contains all
the dynamical information for quantum particles.

2. QUANTUM MOLECULAR DYNAMICS METHOD

Quantum molecular dynar-ncs method s provides the real-time dynamics of
quantum and classical partick , i mixed systems at finite temperatures through
the numerical solutions of it, ime-dependent Schr6dinger equation for
quantum particles and Newton's equations of motion for classical particles. To
understand this technique, consider a quantum particle of mass m described by
She wave function, V(r,t), interacting with a classical system of N particles with
masses Mi and positions {Ri(t)}. For the quantum particle we have



t) = V +  v~r Vq, t); v =) V(- ) ( K
E~t 2m i

i=1

where v is the interaction potential between the quantum and classical particles
and we use atomic units,I = e = 1. In the Born-Oppenheimer approximation, the
positions of the classical particles evolve from Newton's equations of motion:

MiRi = -Vi U((Ri)) - Vif dF I ( ,t) 12 v(r- (2)

where U is the potential energy for the classical particles. Choosing a small
time step At, the solution of Eq. (1) can be written as6

x ,t+At)=eiAtv 2 /4 meiAteiAtV/ 4M f,t) +O[(At) ] (3)

Equation (3) is solved with fast Fourier transform (FFT) techniques6. First, note

e i A t V 2 AmW(,t) = (k,t ) e- i A t k2/4me i K.F (4)

which means multiplying the Fourier transform of q(r,t), i. e., iy(k,t) with exp(-iAt
k2/4m), followed by an inverse FFT. Next, the outcome of Eq. (4) is multiplied by
exp( - iAt V). Finally, the FFT of the resultant of the last step is multiplied with
exp(-iAt k2/4m) and then the inverse FFT is taken. These three steps are
repeated to obtain the time evolution of the wave function. The classical
equations of motion can be integrated numerically with one of several available
algorithms7 .

For systems with broken symmetry due to the presence of surfaces or an
external electric field, the use of periodic boundary conditions in the broken-
symmetry direction is inappropriate and so the first and third steps in the time-
stepping operation in Eq. (3) cannot be executed with the FFT method. For
these Physical situations a new QMD algorithm 8 has been developed.

3. AN EXCESS ELECTRON IN A DENSE HELIUM GAS

An injected electron in a sufficiently dense helium gas tends to localize in the
form of a bubble as a result of the strongly repulsive electron-helium interaction 9

at short and intermediate distances. Recently we investigated the electron
bubble formation using the QMD scheme10 . For the electron in helium problem,
the helium particles interact with each other via a two-body Lennard-Jones
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potential with parameters e = 10.22K and a = 2.576 A, and with the electron via a
pseudopotential 9.

The QMD simulations1° were performed at 77K for reduced helium densities
n = p = 0.1, 0.17, and 0.25 which correspond to p = 0.61, 1.0, and 1.46 x 1022

cm"3. Systems with n = 0.1 and 0.17 contained 512 helium atoms while the
simulations at the highest helium density were carried out with 64 and 140
particles. These gave similar results though t':3 sm iler system showed
evidence of finite-size effects. The electron wave packet was p:',-,pagated with
fast Fourier transforms on 323 grid points and with time step, At, in the range of
0.2 - 0.5 a.u. The total energy was conserved to better than 0.1% over 106 time
steps. Some simulations with 643 grid points gave identical results. Classical
molecular dynamics for helium atoms was performed in the canonical
ensemble' 1

4. RESULTS

Figure 1 shows the electron-helium radial distribution function, G(r),
measured relative to the center-of-mass of the electron wave packet for n = 0.25.
At this high helium density, there are no helium atoms up to r - 12 a.u. and this
excluded-volume effect is an indication of an electron bubble. The excluded
volume is also present at n = 0.17. The shape parameter l o for the electron
bubble indicates that the bubble is spherical. From the excluded-volume region
in G(r) we estimate the size of the bubble to be - 12 a.u. At the lowest density, n
= 0.1, G(r) does not display the excluded-volume behavior as the wave packet
de-localizes.

01.0 fZ

G(r) 05

0.0
0 1 0 20

r (a.u.)
Figure 1: Electron-helium radial distribution function, G(r), for n = 0.25.

Next, let us examine the time variation of the extent of the self-trapped
electron. At n = 0.17, the participation ratio remains small and almost constant
over the entire simulation, indicating that the electron is localized. The behavior
is quite similar at n = 0.25, but very different at n = 0.10. Figure 2 shows the
participation ratio, p(t) = ( J dr I iV(r,t) j4)-1, normalized to the volume of the MD



cell for n = 0.1. This simulation was started by expanding the length scale of the
final configuration of the n = 0.17 run to a value corresponding to n = 0.1 and
projecting out the new electron ground state, which corresponds to an almost
spherical bubble. Therefore the participatin ratio starts

0.4-

0 0
PM 0

p(t)o

0.2-

0.0
4 8 12

t(ps)

Figure 2: Participation ratio for n = 0.1 as a function of time.

out at a value determined primarily by the bubble size at n = 0.17 scaled by the
increase in the cell size in changing the system density from n = 0.17 to 0.1. It is
observed that the bubble quickly expands to a volume that is a sizeable fraction
of the cell volume. After 4 ps the electron wave packet undergoes large
expansions and contractions and finally after 8 ps the wave packet occupies
almost the entire volume of the cell. This expansion indicates de-localization of
the electron that is very likely limited by the size of the system. The wave packet
attempts to find a region of the cell where the helium density is less. Thus, as
the simulation proceeds, the wave packet localizes again temporarily because
of thermal fluctuation in the system. This partial localization and de-localization
is expected to continue indefinitely.

Figure 3 shows the current-current correlation function of the electron, X"(co),
for n = 0.25 and 0.1 obtained by Fourier transforming the time correlation

function <V ft.V 7o > and taking the configurational average within the Franck-

Condon 6 approximation. For n = 0.25, X,"(co), which is simply related to the
optical absorption spectrum, displays a significant structure which
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Figure 3: Imaginary part of the current-current correlation function as a function
of energy in electron volts for helium densities n = 0.25 and 0.1. The peak at n =
0.25 is due to intra-bubble transitions.

shifts to a lower energy as the helium density is reduced to 0.17. These peaks
are present throughout the simulations. At n = 0.1, when the wave packet is de-
localized, the structure disappears and only a background is observed.

At T = 77K we have also calculated8 the electron mobility at a helium density
of 1.25 x 1022 cm-3. Applying an electric field of 2.6 x 105 volt/cm in the x
direction, it is observed that the electron drifts with a velocity of (2.2 ± 0.5) x 10 4
cm/s. The applied field is small since it does not produce any noticeable
changes in G(r). From this simulation we obtain the electron mobility to be (0.08
± 0.02) cm2/volt-s which is in good agreement with the extrapolated
experimental value12 (0.1 cm 2/volt-s).

5. CONCLUSION

In this paper we have presented the QMD simulation technique for studying
the dynamics of quantum particles in mixed systems at finite temperatures. This
technique is applied to simulate the behavior of an excess electron in helium
gas at 77K. It is found that the electron localizes in the form of a nearly spherical
bubble of approximately 7 A in radius above a critical density of 0.6 x 1022 cm-3 .
The bubble possesses quasi bound excited states and intra-bubble dipole
transitions between these states give rise to a pronounced structure in the
optical absorption spectrum. Below the critical density the electron percolates
through the helium gas and displays a featureless excitation spectrum.
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QUANTUM LIQUID FILMS: A GENERIC MANY-BODY PROBLEM
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This contribution reports on recent progress in the investigation of the structure and excitations

of quantum liquids adsorbed to a solid surface, the states of impurity atoms in such films, and the

interaction between them. The subtitle of my talk is "A Generic Afany-Body Problem ", it indicates that

I will, to some extent, emphasize the methodological aspect of the problem.

We start the microscopic description of a many-body system of N particles in a given volume Q in

an external potential with an empirical lamiltonian

IV h : 1 E v(jrj -rj I).(1

Hz{4L~~~~V' + U, ub(ri)}+ ~) 1
i=1 - -j<

To be specific, we consider a system of 'Ile atoms at zero temperature. Ideally, one would like to

solve the Schr6dinger equation for this Iamiltonian. But, even with substantial computational resources,

this is only possible only for a few systems with simple geometries and simple interactions. Therefore,

we must resort to approximations. However, obvious physical consequences of the exact problem are not

necessarily satisfied by an approximate theory.

A microscopic theory must be able to deal with the short-ranged repulsion between particles and

include the long-ranged correlations correctly. Considering N particles in a given volume S2, the theory

must also be able to decide whether particles fill the given volume uniformly, or only a part of it. There

may be a regime of average densities N/Sl where both states are possible. This is where the pressure

of the uniform phase is negative, but the compressibhlily is positive. However, if the uniform phas-e is

diluted to the density point where the compressibility becomes negative, the theory for the uniform phase

should cease to have solutions. In other words, the theory must describe the response of the system to

long wavelength excitations correctly.

The correct treatment of the bulk phase is prerequisite to determining whether a s% stem of particles

will or will not he adsorbed to a substrate. The requirement of the correct inclusion of short- and



long-ranged correlations is needed when Nvc consider the structure of the adsorbed atoms. lleuristica!ll,

one would think of the 'Ile atoms as hard spheres. These spheres would first form a layer closest to the

surface, then, as their number is increased, a second layer, and so on. Eventually, the zero- point motion

of the atoms will win over the attraction to the substrate, and far from the substrate the 'lie particles

will behave as if they are in the bulk. Next, we add some attraction to tie "hard spheres". which is

strong enough to fcrm a many-body bound state. The particles will wish to stick together even %% hen the

attractive substrate is not there. In the presence of the attractive substrate, it is not clear whether the

plane geometry (i.e. a geometry that is translationally invariant in the directions parallel to the surface)

is energetically favourable. The question is to what extent the liquid will "wet" the surface. Formally,

we again encounter the problem of stability against long-wavelength excitations.

Summarizing tle above qualtitative arguments, we find that, in order to adequately describe the

physics discussed above, the man.-body theory to be used must at least qualitatively implement the

following features:

* The theory must describe short-ranged correlations in order to account for a layer-structure of the

adsorbed liquid.

" The theory must include long-ranged correlations in order to give us the right geometry.

• Finally, our theoretical description of the system should be flexible enough to take any symmetry

breaking fully into account.

These physical requirements translate into the simple dictum that a theory should be internally

consistent such that it has only stable solutions. Phrased in the formal language of many-body theory,

our theory must contain a self-consistent description of short- and long ranged correlations, %%hich is

accomplished by a self-consistent summation of ring- and ladder diagrams. For simpler systems like th.

bulk liquid one may get away with simpler theories for a while, but u "'.. the "crimes" will catch up

and lead to unphysical predictions like a negative compressibility. Even if numerical comparison with

experiments look good, it is clear that something is fundamentally wrong with such a theory.

Of course, everything we do should eventually be compared with experiments. Unfortunately,

quantities that can be calculated easily are often hard to measure and vice versa. From the way the

experiments are done, ground-state energy measurements are difficult. Neutron scattering experiments

probing the liquid surface are difficult siotce , . penetration depth of the neuton is about 100 A, vhereas

the surface width of 'le is of the order of 10 A. Ir cie is interested in exploring the layer structure,

one has to look for experiments that are sensitive to the surface structure. Therefore, it ma,, also be

necessary to extend the theory in order to address the quantities that can be measured more easily.

Going back to the formal problem of a self-consistent summation of ring- and ladder diagrams, it

has been knou n for some time that this goal is accomplished b3 both the optimized hyperietttd-chain'

(IINC/EL) and the parquet-diagram2 theory, % hich ultimately lead to the same equations to be solved 3.

Here we adopt the IINC/EL version of the theorN since it is more widely developed and can more easily

tested by %ariational Monte-Carlc calculations. One starts with a variational ansatz for the ground-state

wave function of the N particle system of I lie atoms with coordinates r . ,v:



*1'(r,...,r) = exp v.u(r) + 1: u2 (ri, r,4 (2)
, <i<IV l<i<j<S'

The one-body function ul(r) describes the spatial structure of the system, and the two-body function

u2(r,,r,) describes the short- and long-ranged correlations between pairs of particles. These functions

are determined by minimization of the ground-state energy-expectation value E0 .

SEo 0  6___, -o. 3
6u,(r) - 0 6 u2(ri,rJ) 0 (3)

In many cases the calculation of the variational energy expectation value EO cannot be performed

exactly. Using approxzmaie energy functionals ma3, of course, render the Euler equations (3) meaningless

It is therefore important to use an energy functional that has meaningful stationary points under the

variational problems (3). It has been known for some timc that the IINC hierarchy of approximations has

meaningful variational minima. To show that the IINC/EL equations also provide a correct description

of the short- and the long ranged correlations, we give the IINC/EL equations for the homogeneous Bose

liquid4 . These equations are most conveniently formulated in terms of the pair correlation function g(r),

and the static structure function S(k) = 1 + pf d3 r[g(r) - 1]eikr:

S(k)= 1+ rVph(k) (4)

with

l',h(r) = (ir)v(r) + IVgrI*+ [9(r) - 1]wj(r). (5)
771

The "induced interaction5"' wi(r) is most conveniently represented in Fourier-space:

=71(k) = - 2S(k) + 1)11 - S'(k) 2  (6)
41np

(The three-dimensional Fourier-transform is denoted by a tilde). It is worth noting here that

Vh (Ir - r') = S2EO (7)
bpi (r)bpl (r')'

where the variational derivative is taken for constant uV2(r, r'). In Eq. (4) we recover the RPA expression

for the static form factor. The HNC/EL theory supplements the RPA with a microscopic theory of the

particle- hole interaction Vh(r).

An alternative way to formulate the Euler-Lagrange equation is5

[1h2  + vOr) + W1 (r)] /, -r = 0. 8

Eq. (8) is the Boson-version of the Bethe-Goldstoc equation, in which the bare interaction has been

supplemented by the "induced interaction" wj(r).

Eqs. (4) and (8) are algebraically equivalent, they merely suggest different iteration paths for

the determination of the optimal g(r). The self-consistent solution of Eqs. (1-6) takes three Fourier

transforms per iteration, compared with t.N o fouilicr trausforms per iteration for the solution of the



IINC equations with a pdrait(:tri2ed Jdstrv%% functioli u2 (r). Thus, ti cffltcieic of the optimization

algorithm makes the use of a parametrized trial function completely pointless. The same is true for

three-body correlations and for the Fermion version of the IINO/EL approach.

Returning to the physics, we see that the ]ING/EL theory includes both the ring and the ladder

diagrams exactly, and the mixed diagrams approximately 2 . In particular, Eq. (4) shows that the

theory has, as required, no uniform solution with negative compressibilit., c.f. Eq. (7). The appropriate

symmetry breaking (a droplet or a plane surface geometry, for example) is put into the wave function (1)

by including a one-body function ul(r) and breaking the translational mn ariance of u12 (r,, r,). If system

is, within the assumed geometry, stable against small perturbations, then the theory has solutions. We

conclude that the IINC/EL theory satisfies all the minimum requirements that are needed to deal with

the problem of a quantum liquid surface.

Tie simplest symmetry breaking that can be treated with reasonable computational effort is the

plan: surface or the spherical geometry. The IINC/EL equations for the inhomogeneous system are

straightforward generalizations of Eqs. (4-G), the equations and the algorithn for their iteratixe numer-

ical solution has been given in Ref. 6.

The physical system considered here is a number of helium atoms interacting via the Aziz potential 7.

The atoms are adsorbed to a substrate which is described by an external field Um,(:). A simple form for

.z is the potential obtained by averaging Lennard-Jones interactions between helium and substrate

atoms over a half spaces . One obtains

= I[() 9  (S.)3  (9)

Given the substrate potential, the two-body interaction, and the surface coverage

= Jdzp (z), (10)

the physical pruulem is completely defined. In our geometry, all two-body quantities depend on the

distances z, of both particles from the substrate, and their separation rl parallel to the surface. The

Euler equations for the 4Ie background were sulved numerically in tie HNC approximatioai, specifying

only the surface coverage n. Some typical examples of densit. profiles are shown in Fig. 1. Most

remarkable are the stong density-oscillations of the 4 1e-background, which are due to the geometric

core-exclusion between the 4 Ile particles.

It was already pointed out that a direct measurement of the surface profile b% neutron scattering

experiments is very difficult. It also turns out that the energy per particle does not depend strongly on

the layer structure of the systems, and the chemical potential has onl a weak modulation, c.f. Fig. 2.

Oije might txpect tbhdt the sound velocit% exhibits a stronger dependence on the layer structure of

the surface, but the analysis of our theoretical calculations and the experiments shows that the third

sound velocity C3 (or the derived quantity mc3) depends strongly un the underlaN ing suborate potential

(Fig. 3) which makes conclusions on the structure of the film very difficult.

So far, we have seen that it is difficult to probe the layer structure of an adsorbed 41e film directly.

A moderately easy probe of the surface structure is a 3He impurit3. Experimental interest focusses

presently on the following areas:



Fig. 1: The density pi(:) of

the background film of 4Ile atoms

(dotted lines) and of the 311e

impurity, p((:) (solid lines) are

shown for surface coverages of n"-.
0.02 f 0.4 -

= 0.15, 0.20, 0.25, 0.30, and 0.35 Q .

'Ile atons/A2. The 4 le densities ".

of all films shown are virtually v\" \
identical within the first layer,

whose density maximum is about

0.08 atoms/A. The 'Ile impu- 0.0 5.0 10.0 15.0 20.0 25.0

rity density is normalized such z (,)

that fdp(-) = 1.

Fig. 2: The chemical potential 0.0

/I of 4 1le atoms is shown, as a

function of the surface coverage

n, for three different substrate

potentials of different strength. 5.0

The upper curve corresponds to a

weakly attractive glass substrate,

the lowest one to graphite, and

the middle curve to a potential of

average strengtt.

-15.01
0.10 0.18 0.25 0.35 0.40

n (p-)

(a) Measurements of the binding energy and the specific heat of 3 1le impurities11 , and

(b) Measurement of magnetic properties of 311e impurities adsorbed to 41le surfaces 12 .

Qualitatively, one should expect the following effects:

• For a thin film of 4He atoms (one or two layers thick), the substrate potential dominates, and the 3 ie

impurity atom will be in the outermost layer.

* For a thick film of 4Ile atoms (five or more layers), the larger zero-point motion of the 3He impurity

will dominate, and the impurity atom will appear to "swim" on the 'le background.

* If the outermost layer of the 'Ile film is full, it will be hard for the 3Ile impurity to move. The

"backflow" effect and hence the effective mass of the impurity atom will be large.

* If the outermost layer of the 'lie film is incomplete, the backflow, and hence the effective mass, %%ill

be smaller.



' Figurc 3: nic¢ for Ih, medium

(weakly oscillatii curve) and the

strong (strongly oscillating curve)

substrate potential are compared

with the experimental data of .2

Maynard and Chan (Ref. 10, :"' 5.0
E

crosses). See Ref. 9 for details

oil the analysis of the experiments

and the calculational procedures.

00'

0.2 0.3 0.4
n (,',-)

The last two points also depend on how deep the impurity atom penetrates into the 411e surface.

The above experimental situations require the development of three levels of theoretical tools.

(a) Single-impurity theoiies aim at the calculation of impurity bind;ng-energy and effective mass. The

static correlations between particles determine if and how many bound states the impurity particle

can have at the surface, and whether it penetrates to the substrate. The calculawon of the (complex)

self-energy of the impurity particle gives access to the specific heat and the mobility.

(b) Mixture films in the dilute limit correspond to a system of two static impurities' 3 . To the extent

that the concentration of the impurities is small, one can ignore all higher-order correlations between

the impurity particles and possible dynamic effects due to momentum-dependent correlations.

(c) A theory for two-component systems is needed for large "impurity" concentrations. This enables

us to study the structure of quantum-liquid interfaces.

Formally, impurities may be added to the system by extending the wave function to include impurity-

background and impurity-impurit) correlation functions uf(r'), u"B(rr,), and u"(r*, ). For Fermion

i:np-,rities. the wave function is multiplied with a Slater determinant to ensure the antisymmetry with

respect to exchange. To include a momentum dependence, one may either add a "backflo%%" function to

the one-impurity correlations, or calculate the self-energy in CBF perturbation theory. The ,ariational

wave function of a system of N 4 1le-background atoms and one 3Ile impurity of momentum q is

q(r * "I....r)-'exp = (r) + iq. r + 2u" (rI, r) + i0q(r', ri)] 41o(rl, . . ., ri,).
i-i )

crq(r1,r,) is the backflow~ correlation function 4 describing the current of 'lIe atoms flowing around the

moving impurity. The functions uf(r'), utD(r',r,), and aq(r',r,) are determined by minimizing the

energy Eq of the s~sten consisting of the 'Ile-background and an impurity particle with momentum q.

6Eq = 6Eq 0 6Eq 0.
[ ,,.tr/ =

O uJBh.I ,.A = O, t;..r1 v. - .(2



The total energy of the whole system can then be written as

Eq = Eo + 4o + 2  (13)

where Eo is, as above, the ground state energy of the 'Ile background system, c0 is tile binding en-

ergy of an impurity with zero momentum, and rni is the so-called hydrodyna'ic effective mass. It

is the contribut.,n to the effective mass arising from the interaction of tile ii..j. ity particle with the

backgrodnd.

Similarly, the variational wave function for two impurity Fermions with coordinates ri, r, is

T1 h,+(rl, r: , r,..,riv) exp~iul(rl)+ii -l- +u 1 (r1, r )-

(r rj)+ u1(r1,rj)] }Po(ri,...,rN)4(1,2),
I <i<N

where 4 (1, 2) is a 2-particle Slater determinant. We leave out the backflow correlations since we will

consider only small momenta of the 3Ile impurities. The only new unknown function is the ;Hpurity-

impurity correlation function ul'(rl, r2), which is again determined by minimization of the total energy.

Instead of describing the further manipulations in detail (see Refs. 15-17), let, us turn to the

results of our calculations. The solid lines in Fig. 1 show the impurity density in comparison with the

background density. We see that the 'Ile particle is, as predicted, inside the outermost 'He layer for

our calculation of a double-layer system. As the thickness of the background increases, the 31le particle

is pushed outward into the low-density regime of the film.

A more instructive pic '.re is given by considering the distribution of 4Ilie particles in the vicinity of

the impurity. Figs. 4 and 5 show the 'He density assuming that the 'He atom is located at (z, y) = (0, 0),

i.e. the quantity

P (:,rjI) f/azlp1B(r',r), (15)

where pJB(rl,r) is the impurity-background two-bc.,jy density. For the very thin film we see that tle

'Ile atom is located within the outermost layer, 0432re.s for the thick film, the 4ie background is only

modestly deformed.

We have carried out extensive calculations for the static ground state of one 'le impurity on a

family of 4Ie 'oackgrounds ranging from a. double layer (n = 0.12A -2 ) to a system of about five helium

layers (n = 0.35 A-2). The hydrodynamic effective mass has been calculated using the uniform limit1

for the Euler-equation for the backflow function oq(rl,r,). In this limit, one obtains a closed-form

expression for the effective mass which is identical to a second-order approximation for the self-energy

in terms of the emission and re-adsorption of ripplons aihd phonons. Our theor-tical description of the

first layer should not be considered very realistic', but the uncertainty in the description of the first

layer does not seriously affect our conclusions. This part of the system has a very high density and 0-e

impurity hardly penetrates (c.f. Fig. 1). Effeclively, the impnrity atom "sees" the first lay,. i we,.

a solid.

Our results are compared in Fig. 6 with tie experimental results of Refs. 11. We find tha

the hydrodynamic mass is somewhat lowefr than the e,:perimental ma-s. We notice. hw ever. thal the
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Fig. 4. The density of 'Hla atoms in the vicinity of the Fig. 5. Same as Fig. 4 for the background films with

3eimpurity, pB . 11), is shown for the dou- the largest surface coverage n = 0.35A
ble layer background film with a surface cov-

erage of u~ = 0.15A -2. The density is normal-

ized to the calculated bulk equilibrium den-

sity, HJNC.

exper~ment has not been done in the dilute limit, but for a 'Ile density of 0.3 layers. Therefore we must

include the effects of the quasiparticle interaction between the 'H1e atoms.

The interaction between 3 He impurities is intellig~ently - scussed in terms of a local effective inter-

action I'qj (r, r'). This effective interaction includes both the direct Van der Waals force between the

impurities and the exchange of ripplons and phonons through the 'Ile background. It can be obtained b%

generalizing the theory of the impurit) -impurity interaction'" to the inhomogeneous case. In the case of

a dilute system of impurities, we may takc the impurity-impuritN interaction as an effective interaction

betwveen any two 3H c atomns for a finitie impurity population ("quasiparticle interaction"). Thle relation

to Landau's Ferm-i-Liquid theory in two dimensions's is drawn ia, momentumr space by identifying

f,(q11) + f,(ql1)aj ,.a2  1/(0+) - 1V 1,01 + al a,)

= J dd:)d 2r~jpl (ZO,)p(z,)Vqjf(Z1 . 2,r 11) I1-6 1 oeaIrI

with the quasipartizle interaction. Givei, the interaction (16), wc can calculate the Fermi-Liquid paramn-

eters of the two-dimensional Fermi liquid,' 8

00

N(0)A(hiq - enI) = ZF;1, cos(77n0)
rn=O (17)

N(0)f.,(Iql - q21) = E F,,,, cos(mO),
m=O

where 0 is the angle between q, and] q:!, and AN(0) = m /,,h2 hle decnsity of states at the Fermi surfac-.



I 'loln these, we obtaln tilt n ll.dgnetic, sU',t pl )ilty ),(U), ill UilL. u1 lilt Sl.sC itItll).y
, 

v1 tilt Iret I u-

dimensional Fermi gas, X30,

X(O)/X30 = (,11n/73)(1 + Fi'12)1(1 + Fg) (18)

and tile total effective mass

," = mj(1 + Fr/2). (19)

Figuie 6 (solid line) shows the total effective mass in calculated from Eq. (19). For one active layer

of 4 le the hydrodynamic mass is about 1.8 l1 3 , in reasonable agreement with both the data of Rcfs.

11 and the conclusion of Ref. 12 with their thinnest 'Ile film. Inl this regime the correction due to tile

quasiparticle interaction becomes quite sizabk %vi.}" increasing 'Ile concentration, but it is difficult to

make a quantitative statement due to both the high density of the background and the rapid variation

of the effective mass.
Fig. 6: The calculated effective mass 0.35 0.25 0.20

F.g. 6:2 The0 0.15

rn* is shown in units of the bare 3 Ile 2.0-

mass m3 as a function of the inverse I "

film Ihickness D (dashed line). Tile t

circles with error bars are the experi-

mental data of Refs. 11. The upper - -y /

scale shows tile surface coverage corre- 1.5

sponding to the film thickness D. The -

dashed line shows the hydrodynamic

effecive mass mn for 0.3 layers of 3 Ie.

1 .0 o - 0C2 0 ,3
0.00.0.03 D-'

For all cases with thicker 411e filns, the accuracy of our theoretical prediction is quite satisfactory.

Tile microscopic theory predicts a hydrod. namic n-ass that is consistent with the estimate nH/ra =

1.26 --' 0.15 given by Valles ci al. (Ref. 12), but below the results of Refs. 11. The agreement with

the latter data is improved when the corrections due to the quasiparticle interactioii are included. The

quasiparticle interaction between 3 1e atoms in the surface gives a density-dependent correction to the

effective mass. The contribution is about 10% for the case of 0.3 layers of 3 11e.

There are slight oscillations of the 3 1l effective mass as a function of the thickness of the underlying

film. A weak plateau is seen around D - 1 ;. .1 i - . This coincides with the regime where tile third

liquid layer is formed. Thus, we conclude that the impurity effective mass has weak layer structure, but

that these oscillations dart, 1 out rather fast. The effect of tile migration of the impurity atom into the

surface is much stronger aia:, the modificatiun of the back-flow for different degrees of filling of the last

layer so that it would be much harder to observe fluctuations of the 'Ile effective mass for very thick

fins.

A comparison of the theoretical and the experimental magnetic susceptibility ratio X(O)/x3o is shown

in Fig. 7. Her we have taken a hydrol'namic mass of 1.267)m3 , which gives the best fit to experimental



* refer to a much smaller 3 11c co%,crage V\ find a quite satisfactorA agreement berween theory and

experiment.

The agreement is not quite so good for smaller 4 Ie coverages. This is partly due to the fact. that

no attempt was made to re-adjust the effective mass. One must also be concerend about the accuracy

of the theoretical description when the 'lie impurity penetrates into a regime of higher 4 le density,

where IINC methods are intrinsically less accurate. Ilowever, IINC-type microscopic theories are, while

using modest computational resources, quite capable of giving at least a semi-quantitative picture of the

structure of complicated systems like the ones discussed here.

Finally, we stress that the good agreement between the experimental results and our calculation

has been obtained with a stalic, monentum-depcnde*l quasiparticle interaction. The calculation of

the magnetic susceptibility involves phase-space integrals of the quasiparticle interaction over momenta

between q = 0 and q = 2kF. Therefore, with increasing impurity density one probes the momentum-

dependence of the quasiparticle interaction. We believ, chat measurements of the type of Ref. 12 are

extemely useful to enhance our theoretical understanding of the quasiparticle interaction in liquid 31Ie.

Layers

Fig. 7: Magnetic suscepti- 0. o.1 0.2 0.3 0.4 0.5

bility X/X30 of the 31Ie film as

a function of areal density n in

atoms/A'2 , for 41Ie coverages between

0.15 atoms/A - (uppermost curve),

and 0.30 atoms/A 2 (lowest curve). 2.0
.0.

Solid squares: experimental data'0

for a surface coverage of 9.5 411e lay-

ers. Circles: experimental data12 for

a 31Ie density of 0.088 layers, for 4'Ie

coverages of 2.8, 3.4, 4.75, and 5.24
1 0

atoms/A 2 . 6.O00 0.08 0.016 0.624 0.032
n (A-2)

I hope that I have succeeded in this contribution to present the study of quantum liquid surfaces as

an exciting field foi both expcrimental theoretical research. Let me conclude by highlighting the most

interesting physical and conceptual aspects of this field of research:

* Physically, one is ablc to construct very clean two-dimensional Fermi systems and investigate these

systems over a wide regime of densities. This is in contrast to bull: '11C, -"here experiments cau bu

performed only in a narrow regime around the equilibrium density. By carrying out measurements on
311e impurity films over a large density regime, one should be able to mneasure the nomentum dependence

of the quaszpartzclc interaction.

* Conceptually, quantum liquid films are many-body systems where state-of-the-art many-body theory

is necessary for a thorough microscopic understanding. At this time I do not intend to suggest that



quantum liquid films be studied with other many-body methods. But looking back at the obvious

requirements that must be satisfied by a theory in order to successfully deal with such systems, it may

be worth asking

Can your favorite many-body theory deal (in prin-

ciple and in practice) with these systems ?
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ABSTRACT

The effective Hamiltonian for a pair of Fermion derived from the
basic many body Hamiltonian allows for the interaction of a pair with
its medium in a number of ways e.g., once via the mean field and another
via the pairing part of the interaction. The two state model developed
earlier has been solved in a better approximation. The model has then
been applied to calculate pairing energy, critical temperature,
coherence length and critical field for YBa 2Cu3X7 _6 with X = 0, S, Cl,
F, Br, I. The model can account for the general trend and magnitude of
these observables, particularly the very large value of the critical
field. Using a model Hamiltonian of Fr6lich type, the
electron-phonon coupling strength is estimated. The electron-phonon
coupling strength for our particular system is more than an order of
magnitude larger than the one in normal superconductors. The Eliashberg
dimensionless coupling parameter X is found to be about 2.0 to 3.0.

1. INTRODUCTION

Transition from a normal state, be it a conductor or a
semiconductor or a perovskite, to a superconducting state involves a
phase transition. Whereas, electrons in a normal state behave like
incoherent Fermions, the formation of Boson-like coherent pairs is a
necessary criterion for a superconducting state. Near critical
temperature, Tc, one has, therefore, two types of states of a system,
one representing incoherent Fermion and the other coherent quasi boson
like pairs. A set of coupled equation commensurate with this situation
has been derived 1 2 and the zeroeth order solution has been successful
in predicting the trend of T. in Y-Ba-Cu-O-X with X = 0, S, Cl and F.

*A travel grant from the U. S. Army Research Office is thankfully
acknowledged.

#Dedicated to Professor Don Lichtenberg in appreciation of his human
qualities and contribution to physics.



The key to the pairing has been assumed to be the formation of doubly
ionized negative ion X2 - .  Qualitatively, one, therefore, expects that
the substitution by Br and I both of which form negative ions should
give rise to superconducting behavior and this has recently been
confirmed3). In sections 2, we present a better approximation of the
two state model and calculate Tc, energy gap, coherence length and the
critical field. In section 3 we discuss the relation of the calculated
energy gap to electron-phonon coupling constant using an interaction
similar to the one proposed by Fr5lich. Hamiltionian containing this
interaction has been diagonalized using the method of Huang and Rys5 .
We estimate the electron-phonon coupling strength in a simple model and
pr.sent there a discussion of the Eliasberg coupling constant.

2. THE THEORY

As noted in ref. 1, the equation for a pair of Fermion in state a
in a medium is given by

[e(i) + 0(j) + V(ij) - a] C(i ' j)

n ~
+(1/2)1 Jdkdlo 8 (k,l) W4 (ij)o (k,l) = 0 (1)

8=1

where V(ij) is the effective two-electron interaction obtained by
integrating over all lattice coordinates R, of the bare
electron-electron and electron-lattice inter.action hee and he-x,
respectively.

V(i,j) = < hee(ij) + he-x(R,i j )>R (2)

0(i) is the effective one body operator which could be bare kinetic
energy or an effective one-body interaction. W is given by

W = [V(i,k) (1-X(i,k)) +V(i,l) (1-X(i,l))

+ V(j,k) (1-X(j,k)) + V(j,l) (I-X(j,l)] (3)

X(ij) is the exchange operator transposing all coordinates i and j. ¢
is an antisymmetric function. W is the average potential generated by
pairs other than €.. In case all the pair functions are replaced by 2x2
determinants of single particle orbitals, (1) reduces to the set of
Hartree-Fock equation. Above critical temperature the total electronic
wave function 'F is given by properly ordered permutation P of of
Fermion type of pair function

-- (1/,2n!) X cP a (12) ...... a (2n-1,2n) (4)
P 1 n

Below critical temperature Ws is a linear combination of Schafroth pair
functions6) and leads to condensation necessary for superconductivity

ps= C j(-1)P)[ (12)(34) ..... (2n-1,2n)] (5)nP



Because of the difference between these two types of wavefunctions,

the average potential seen by a pair i.e., the terms containing W in
(1), differs significantly in two cases. That might result in a change
in total energy signaling a phase transition. Near critical temperature
we expect significant components of both types of states to be present
and the total wavefunction may be written as

X = AIq)F + A24S  (6)

Thus, near critical temperature, one is to diagonalize the matrix

H11 H1 2

H2 1  H22 (7)

where Hii(i=1,2) contains diagonal matrix elements in states 1,
identified as Fermion like states and in state 2, identified as
quasi-Boson like states. H12 = HI are the coupling terms. Hii is a
sum of two terms, ci containing effective average field seen by a pair
and cii, the interaction between a pair. The coupling term Hi contains
at least the effective two body interaction V(ij) but might also take
into account the difference in mean field in two cases.

The diagonalization of (7) leads to

E =I ( + 2 1 (H -H 2 + 41H 2I (8)E+ 2 (11 + 22) _2 1 -22) 12

E_, being lower in energy, is to be identified with the superconducting
state and E+ with the normal state. Since (H11 - H22)2 and IH1212

are,respectively, of the order of a few eV and a few tens of meV, it is
reasonable to assume "!H 12<<«IH11-H 2 2 1

2. Then

1 H22- IHI12 =H22 H12 (9)
- H11_H22 22 -_2+11-c 22

c1 1-e22 is usually much less than (ei-c 2). Therefore,

E €c2 +s 2 2 - I2 (10)

Pairing energy in the superconducting state AE

_;&_ (11)
E = (E - c2) = c2 2  - C1-2

Both c22 a-d 1H1212 involve integration over all lattice coordinates and
represent a coupling between electrons and the medium. These depend on
various parameters of media or lattice and are collectively denoted by

Since this is a zero-temperature theory one can relate AE to Tc
using the relation

7 , 8

(,n/Y)kTc = AE (12)

(Here k and Y are, respectively, Boltzmann and the exponential of Euler
constants and %/Y n 1.764). Assuming IH1212 to depend on mass of ion X
as 1//14, we may write



Tc , a(K) - b(K)/M(c2-cl) (13a)

a(K) - b(K) AW (13b)

Using Tc 930K and 900K for X = 0 and S, respectively, we find
a(K)=310K and b(K) = 25210K. Since AW for 0 and S are very close, we
expect them to have similar Tc which is, indeed, the case. As noted in
refs. I and 2, the superconducting state in this system is identified
with the localization of electron pairs in forming doubly ionized
negative ion, X2- and the normal' state with singly ionized negative ion,
XI1 . In table 1 we have compared calculated Tc with the observed ones.
For X - Br and I, we provide theoretical estimates using a range of
electron affinities of Br- and I-. The theory can reproduce the trend.

There is some uncertainty about the validity of (12) in this type
of superconductors. Nevertheless, we have used it to calculate the gap
parameter and tabulated them in table 2. The measurements for the
oxygen case is in accord with the calculated number but indicate that
the constant of proportionality between A and Tc is about twice the one
in (12).

Coherence length o is related gap parameter by

co= VF/vA (14)

where VF is the velocity near Fermi surface.., Assuming the VF in this
type of superconductors is close to those in type II superconductors, we
may determine this from Nb3Sn(Tc = 180K, Cc 

= 50 A). Calculated values

are tabulated and compared with data in table 2.

Since A and Co for this type of superconductors are, respectively,
substantially larger and smaller than those in type I and II
superconductors, we may call these type III superconductors. The large
A and small coherence length are indicative of very strong coupling
between pairs and the environment and the coherence is more localized.
Thus, the BCS approximation of a constant weak coupling between a pair
of electron via phonons is invalid for these materials.

The difference between the total energy of the normal and
superconducting states is related to critical field Hc by Hc2/8N =

energy difference per unit volume

12/8-.T x ilHx -H22) + 41i121 (15)

where p is the number of electrons per unit volume. We have used (8) to
get the energy difference per pair between the normal and the
superconducting state.

Assuming that (E 1 1-c 2 2 ) << (ci-E2) we get

(Hc 2 /8r) (2/p)= I(1 c2) + 21 H! 212
cl-E 2

J(c 1-c2 )-2(,./Y)k b(K) AWl

ZI Ci- 21 (16)



The last approximation is valid since the second term is of the order of
a few tens of meV but I(-kc2)I is about 5 to 10eV. Eq. (16) is an
important result and is very different from the expression obtained in
the Schafroth or BCS theory. In latter two cases instead of (15), one
has 9 (Hc2/8n) (2V/PE) = A2 . Thus, the theory predicts that critical
field in this types of superconductors is much larger than that in type
I superconductors. We may estimate p from normal superconductors e.g.,
tin which has a Tc 3.730 K and lic - 306 Gauss. Noting the p per meV =
pE/V, we get p - 1078/cm3 from the tin data. Calculated critical field
using this, is noted and compared to the observed value in table 2. The
theory can account for the large critical field seen in high Tc
super conductors.

3. EFFECTIVE COUPLING STRENGTH IN A FROHLICH MODEL

Describing the medium and the electrons, respectively, by Boson
operators, bk and Fermion operatorsak we may write the Hamiltonian for a
linear coupling between the two as follows

H= C a+a + I hw(k) [bkbk + 1 ]
k

+ , a [v(k,A)bk + v(k,X)bk] (17)

This is basically the Hamiltonian proposed by Frdhlich4 and used in
the Eliashberg1 1 formalism. Taking v(t,A) to be the matrix element of
(C.VV) where and V are, respectively, unit polarization vector and
potential at lattice sites, one may define a dimensionless coupling
parameter X within the framework of Eliasberg formalism. The averaged
electron-phonon interaction a 2 (w), averaged electron-phonon matrix
elements <g2> and the dimensionless coupling constant X are related as
follows:

X = 2Ja2(w)F(w)dw/w (18)

N(O)< -- f Wa2 (w)F(w)dw (19)
2M 0

In the above F(w) is phonon density of states, and N(o) is
electronic density of state at the Fermi energy and M is the atomic mass.
In case a2 = constant, as suggested by McMillan1 4

N(O)<g2> 

(

A = M -<-2- = 2 2 F(w)( - dw (20)

with <w2> fF(w)wdu/F(w)u-1 d (21)

Evaluation of a2 and <g2> require a knowledge of A and either <w2> or
<w-I>.

A can be determined from observed Tc. For small and moderate
values of A, McMillan's relation holds 14

Tc = K exp[- 0 4 ( + A ) (22)



Here P* is McMillan's Coulomb parameter and K is either logarithmic
average phone frequency log/l. 2 or Debye temperatue TD/1. 4 5.

For very large X i.e.> five times (phonon frequency) 2, Allen and
Dyne's13 relation holds

Tc = 0.180(1+2.60 v*)-l/2 XI/ 2  (23)

Implication of (23) is that there is no upper limit of Tc . X, is not
expected to be very large for th*e 1-2-3 superconductors. Since "log is
not very well known, we can estimate X using K = TD/1.45. For X = oxygen
Tc = 93, and TD = 812 (ref. 16). Calculated values for X are 1.38,
1.89, 2.09, 2.45 and 2.81 for ,* = 0, 0.10, 0.13, 0.18 and 0.22,
respectively. Thus, X is estimated to be between 2 and 3. Both cX2 and
<g2> can be evaluated once phonon spectra become available.

One may, however, follow a different approach noting that the
Hamiltonian (17) can be diagonalized exactly f'ollowing the method of
Huang and Rys 5 , 1 2 . The expression for diagonalized energy E ts given
by

E (nk) = - A + I.-6w(k) In + -3 (24)X' k k 2k

with

AX= RIv(+, ) 12 () (25)

v(it,X) could take various forms, including the matrix element of (c.VV).
We can, however, make a simple estimation of the electron-phonon
coupling strength by setting v(",X) = g&,(k). In this case28

AA g= 9A- w (k) g2 k TD (26)

Using the observed values of A = 32 meV1 5 and 50 meV1 7 and a Debye
temperature 16 TD = 8120 K, we get g2 - 0.46 and 0.71, respectively.

Both (23) and (25) in conjunction with (12) imply that there is, in
principle, no limit of Tc. The key to high Tc is strong electron-phonon
coupling as suggested by Fr6hlich 4.

Since the model should be valid for type I and II superconductors,
we can calculate g2 for those cases. In Table 3, we have compared
effective coupling strength g2 for type I, II and III superconductors.
The electron-phonon coupling in high Tc superconductors is two orders of
magnitude larger than that in type I superconductors. It is about an
order of magnitude larger than that in type II superconductors.

4. CONCLUDING REV4 RKS

Although in this analysis, particularly in section 3, one has
mentioned electron-phonon coupling, the theory outlined in section 2
does not restrict superconductivity to effective pairing caused by
electron-phonon coupling case only. IN FACT, ANY MECHANISM THAT MAKES
EFFECTIVE INTERACTION (2) ATTRACTIVE AND ALLOWS TO FORM SCHAFROTH'S PAIR



COULD GIVE RISE TO SUPERCONDUCTIVITY. A coupled electron pair in a
singlet state and with opposite momenta is usually the lowest energy
state in many potential wells. Hence, it is natural to use this
coupling scheme along with the coherence state condition for
superconducting states. One can form such a state in many ways e.g., by
surrounding a pair of electrons by positively charge ions. Given the
right condition, that system could also exhibit superconducting
behavior, even though no electron-phonon coupling is directly involved.
There is no upper limit of Tc and a strong electron-phonon or

electron-environment interaction is a necessary requirement for high To,
as noted by Fr6hlich4).
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Table 1: Calculated Tc (col. 5), are compared to observed one (col. 6).
Electron affinities in col. 2 and for 0 and S in col. 3 are taken from
ref. 18. Electron affinities for F- and Cl- are theoretical calculation
and Br and I are estimation. (a), (b), (c), (d), (e) and (f) are refs.
19-23 and 3, respectively.

Xl e.a(x)(eV) ea(x-)eV AW T,(cal.)0 K T(expt)OK
0 1.117 -8.73 -0.02451 93 9 3a
F 3.45 -4.8i -0.02778 102 15 9B

140 c

80 to 8 9d

S 2.07 -5.51 -0.02332 90 90e

CI 3.61 -6.11 -0.01739 75 72e

BI 3.36 -6.00 -0.01202 61 - 751
-5.00 -0.01346 65
-4.o00 -0.01528 70

I 3.06 -6.00 -0.00979 56 - 501

-5.00 -0.01100 59
-4.00 -0.01259 63

Table 2: Calcul '.ed gap A (col.2), coherence length o (col. 4),
critical field (col. 6) are compared with respective observed values, in
columns 3, 5 and 6.(a), (b), (c), and (d) are, respectively, ref. 24-27.

X A(cal.) A(expt) o(calc.)A o(exp)A H(cal.)G Hc(exp)Oe
MeV MeV

0 14 15-2 3a
)  10 -220 )  25 x 103  (10±2()10

32
b

-50c )

F 16 - 9 - - -

S 14 - 10 - - -

C 11 - 12 - - -

B, '-11 - 13-15 - - -

I- 10 - 15-17 - - -

Table 3: Coupling strength g2 in some type I, II and III
superconductors.

Substance AlI Re Sn Nb Y-Ba-Cu-0
T. in OK 1.16 1.69 3.72 9.22 93.00

debye Temperature (meV) 36.9 35.8 17.20 23.90 70.06
0.00 4 0.0i9 0.037 0.46 to 0.71
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INTRODUCTION

In the last workshop in this series, I presented some results obtained by ex-

pressing the Baym-Kadanoff algorithmIl-2] in the language of ,he parquet theory[3-

14]. That paper[15] showed (i) that, the parquet theory is not a conserving theory

in the sense of the Baym-Kadanoff theory, (i) applied the Baym-Kadanoff theory

in this form to some simple self-ene:-gy diagrams. aiil 1::', observed that none of

the resulting vertex functions was antisymmetric. This contributioll presents some

new results obtained using the same formalism. The nain result is a proof that any

set of diagrams which is both, onserving and antisymmetric under exchange of the

outgoing legs must. include all parquet diagrams obtained using the bare interaction

as well as an infinite number of irreducible diagrams.

NOTATION

The notation has been changed slightly since the last workshop, so a definition

of terms is in order. The diagramnatic constructs of interest. are the two-body

Green's function and the single-tirticle self-energy. Diagrams for the two-body

Green's function are to be written in ter-ms of one-body Green's functions which

use the self-energy; hence explicit inclusion of self-energy insertions in the diagrams

for the two-body Green's function should be avoided. The lowest-order contribution

to the two-body vertex is taken to be the bare interaction and its exchange; the

terms in the two-body Green's function which are just the direct and exchange

product.s of two one-body Green's functions are not included in this category. A

direct diagram is one in which the line of propagators entering one side at the

bottom ultimately can be traced through to the same side as it, goes out the top.



equationsj8

S=V+S+U-C+L R

s= r®(v+ U+c - L + R)
u r®(i, + S + C'+ L + R)
c =r@(v + s + u)()

L =r(,zY + S + U)
R =r(V + S + C + L + R).

The apparent asymmetry in these equations arises from the fact that some diagrams

generated by the ©, ®, and T operations could be generated in several different

ways. The equations, as written, guarantee that each such diagram will be generated
but once. A more symmetric set of equations, which is equivalent, is written in the

form [12,14,161

r=I+S+U+T

s= (r- s)®r
u = (r- u)®r
T =B + rQ)(I + s + u + B) + (I + s + u + B)®r + rQ)(i + s + u + B)®r

B= (I + S + U)®(I + S + U + B),
(2)

where

® =a © + a©r . (3)

Each form has its utility; eq. 2 is more symmetric, but it also has two operations

explicitly on the right-hand side.

A convenient way to compute the single-particle self-energy E is to take some

approximation for the exact vertex f, add an interaction V using the operation ®,
and then close off the two right-hand lines with a one-body propagator. If P is

antisymmetric, the self-energy can be computed from the direct part of P by

= d(r®v) + e(r®v), (4)

where the direct, and exchange lines contributions are formed "iy applying the two

operations illustrated in fig. 2.

If f is ,ot antisymmetric, then

E = d(I®V). (5)

The exact theory and the parquet theory both have an antisymmetric P, so
that. r = f and eq. 4 is appropriate. However, the Baym-Kadanoff algorithm

generates an approximate vertex which is not necessarily antisymmetric.



r r

d(r) e(r)

Fig. 2: Forn ing the self-energy I.

BAYM-KADANOFF THEORY

The Baym-Kadanoff (BK) algorithm takes an approximation to the self-energy
E which is taken to be constructed diagrammatically from one-body Green's func-
tions which use the same E. The source of the approximate E need not. be speci-
fied; it could be computed from some approximate vertex using eqs. 4 or 5, but it
need not be. The conserving vertex is obtained as the functional derivative of the
self-energy with respect to a weak external two-point non-local perturbation. The
one-body Green's function is itself a functional of this interaction, and the func-
tional derivative of the one-body Green's function can be expressed back in terms

of the functional derivative of the self-energy with respect to this small non-local
perturbation. We note that any self-energy contribution can always be expressed in
the form of fig. 2, where the P may be irreducible. The algorithm, in the parquet

notation, proceeds in two stages.

First, one generates a two-body kernel

-:=v '(6)

where the prime denotes the functional derivative with respect to the Green's func-
tion. Careful inspection shows that E can have both direct and exchange parts, but
they cannot. be of ,al reducibility types. Specifically, only reducibility types I, S,

U,El, S, C, L, R and A can come out of this operation. To show this, we first write
d'(a®3) - d(a,'® 3)-+ d(,a®') + a®3 + a®3 + a,© 7+ + +(7)
e'(a®3) = ea'®) + e(,®') + ,® + a®3 + a®

The immediate functional derivatives are all of the types indicated. For computing

, V, so that 3' = 0. The only remaining terms are the d(a'®I3) or e(a'@f).
If a is irreducible, then these terms are aswell. If a-is reducible, then the functional
derivative can be transformed using

= d((a'®@3)®-y) + d((a@®')®-) + d((a©®')®-)

e((a®3)'®y) = e((&®/)®y) + e((a®'/3)®) + e((a® ')®y) (



, Tl, last term on the right-hand sids of co. 8 is alway., irreducible. The middle

term can be expressed in reducible form using table 1. All of these table entries are

in one of the stated categories.

©! d((o.')®,y) d((,,.® ___® _

© a©( 3 ) a®(- 3 ) Oa(-y3) ® a@(1,03)

© o.( y ) a®(y®@) aDy® P) a(I,@® 3 )

Table 1: Diagrams from the middle term of the right-hand sides of eq. 8.

The final case is the first term on the right-hand sides of eq. &. These can be

rearranged using the diagrams in fig. 3 which correspond to the right-hand sides of

the identities

e((a@P)@-i) = (o.@( 3®))

d((® 3)®-y) = @ (-y
a(( ©)® )= d(a®y©3))

d((a®13)®y) = d@®(y®3))

d((a'1®-@) = (@) O

e((cx®I)®'y) = e(o.®(P .))()

e((a'®!)®-.) = e(a®O ®J,,))

e((a'©1)®T) = d(o.@'®(y))

e((a®3)®) = e(cx®(y®))

e((a013)®y) = e(a®c6® ))

These diagrammatic identies are equally valid if a is replaced by a', and hence the

first, terms on the right-hand sides of eq. 8 can be transformed into the form of the

left-hand sides of eq. 8., This process cannot go on indefinitely, since each time eq. 9

is used to make a transformation, the diagram a is of lower ordcr in perturbation

theory.

The full BK conserving vertex is generated from by solving the equation

+ =r-@± + .8 09 + 't09. (10)

Sorting out. the direct and exchange parts and doing some diagrammatic rearrange-

ment., we cast the resulting components of the BK vertex in the form of eq. 2,
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Fig. 3 Some diagrammatic rearrangements

obtaining exchange components

fx =4+§x+Ox+t

ix = (11)

Ux = (t'x -x fX
t'X = t-

and direct components

rx Ix + Sx + Ux + Tx

SxS=&

Ux U- (12)

Tx Bx + r®(Ix + Sx + Ux + Bx) + (Ix + Sx + Vx + Bx)Of

+ f1((Ix + Sx + Ux + Bx)®r
Bx = (Ix + Sx + Ux)(Ix + Sx + Ux + Bx)

The ( operation.in eq. 5 requires the Lindhard bubble to be dressed by f.

These expressions for the conserving vertex basically can be easily understood:

the self-consistency implicit in the BK algorithm is a t-channel operation as seen

in eq. 10. Thus, the integral equations build the t-channel chains and vertex cor-

rections, while the exchange channel is the u-channel. The s-channel diagrams can

only come from the explicit functional differentiation with respect to the one-body



• qii Gren'. function, since they can't be generated by a direct or exchange t-channel

operation.

As we noted before, the vertex generated by the BK algorithm need not be

antisymmetric; indeed, eq. 11 and eq. 12 show what. the diagrammatic content

actually is.

CONSERVING AND ANTISYMMETRIC IS MORE THAN PARQUET

In this section, we prove that any approximation to the self-energy which is

used to generate a vertex which is both antisymmetric and conserving and which

includes the Hartree term must include a class of diagrams which includes all par-

quet diagrams generated from the bare interaction and a large class of irreducible

diagrams. The key to this argument is that antisymmetry of the conserving ver-

tex implies no need to distinguish between r and P. This provides a significant

constraint, since eq. 11 and eq. 12 then can be used to identify certain functional

derivative results with the results of integral equations in the ® and ( channels.

At the Hartree-Fock level (Fock is included if Hartree is), I will include V.
Now assume that all of the parquet terms are generated up to order n in perturbation

theory by some set of self-energy diagrams. (A minimum set of self-energy diagrams

can always be found by using the algorithm of the following section). The exchange

channels (eq. 11) then generate U correctly to order n + 1 using only the V in I,

since all of the inputs are correct- to order n and the first-order term is correct. The

direct channels (eq. 12) generate T correctly to order n + 1 for the same-reason.

Finally, we note that the functional differentiation of any diagram which produces

or@p also produces a®,8, so that since U is correct to order n + 1, so must be S.

But if all of the diagrams are correct to order n + 1, then they are correct. to all

orders. Hence all parquet diagrams must be generated.

As we argued previously, parquet is not conserving: a set of self-energy di-

agrams which generates parquet. must also generate an infinite set of irreducible

diagrams. As a consequence, parquet, theory is not a sufficiently large class of dia-

grams to be both conserving and antisymmetric. We speculate that the only set of

diagrams which satisfies both criteria is the complete set, of diagrams.

PARQUET DIAGRAMS GENERATE SELF-ENERGY DIAGRAMS

Here we present the algorithm which determines, for any reducible diagram p.,

the parquet diagram whose direct or exchange contribution to the self-energy gives

p on functional differentiation with respect to the Green's function. It is convenient

to use the notation of eq. 1 in this section. The first. step is to determine whether

the diagram is a member of the acceptable types {S, U, S, C, L, R}.

If so, then A = axA, and the starting point is obtained by looking in tables 2-

3.

In tables 2-3, the -* entries indicate that the direct diagram can be rearranged,

and one should look up the transformed form.



a Cs -A 0 I

V d()®V) d(a®V)

-)(a3@-y d(a/)®y

13®y d((a®13)®y) -. (cr®1)®y

.0©7 d((cx©j)®3) d((a©j)®3)

3®y d((,a®7 )®P) d((a®j)® )

y e((a©&)®P) e((a©j)® l)

Table 2: The starting point for direct diagrams.

A (,o,®,) 1 (a.©.) 1 (°®0,) (a®.A)

V t(h®v) d(e®V) e(a®V) e(a®V)
13® -* ((a ®i)®-y) d((a®f3)®j) e((a®1)®'y) e((a®P)® )

B.©y d((aO,8)® ) - ((a©,6)©y) -- ((,a0,3)©y) d((a¢j)®,3)

f3® e((o0 i)@ ) - ((a©@3)®7) - ((a®/3)®y) e((a® )®/3)

1307 e((a@P)@y) -* ((a®3)©-.) -* ((a @3 )O-,) e((a0 ®3)

Table 3: The starting point, for exchange diagrams.

The second kind of entry is indicated by the first line: if A is V, then we are

really done, since then a is the parquet diagram whose functional derivative gives

the desired diagram.

The final case is a little more complicated: the table entry is used as a starting

point to carry out a reduction using table 4. That is, a direct or exchange diagram

from table 2 or 3 is used to look up a new diagram from table 4. If this diagram

has the form d(v®V) or e(vz®V), the procedure terminates with v as the parquet

diagram whose functional derivative gives the desired diagram. If not, the table

entry is used to generate a new table entry. For parquet diagrams, this procedure

eventually must terminate.

DISCUSSION

We are at present at work determining a good form for the three-body integral

equations which sum all irreducible diagrams generated by the BK algorithm using

parquet as input. The present form of the equations is not particularly enlightening,

and will not be presented here.

The main coclusion to be drawn is that two properties of the exact vertex

which one would desparately like to maintain, antisymmetry and the conserving



S®(®)fl d((A)®y) (a )

o®(1®7)d((a®3)®y) d((aCDO)®/ )

Table 4. Iterate using this table until the right-hand term is V.

property, are incompatible at any level less than parquet. This has been pursued

for the purpose of finding out a satisfactory approximation scheme for fernion

parquet theory. It appears that to satisfy these properties where they are needed,

it will be necessary to use different approximations in different contexts.
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